Measuring with unscaled pots - algorithm versus chance

Szilard Andras!, Ors Nagy?
Babeg-Bolyai University, Cluj Napoca, Romania

Motto: I cook every chance in my pot. And only when it hath been quite cooked do I
welcome it as my food.
Friedrich Nietzsche

ABSTRACT. The central focus of this paper is on the following problem:

Consider three unscaled pots, with volumes a,b and ¢ > maxz{a, b} liters, where a,b € N*. Initially
the third pot is filled with water and the other ones are empty. Characterize all quantities that can be
measured using these pots.

In the first part of the paper we solve this problem by using the motion of a billiard ball on a
special parallelogram shaped table. In the second part we generalize the initial problem for n 4+ 1 pots
(n € N,n > 2) and we give an algorithmic solution to this problem. This solution is also based on the
properties of the orbit of a billiard ball. In the last part we present our observations and conclusions
based on a problem solving activity related to this problem.

The initial problem for 3 pots is mentioned in [2] (The three jug problem on page 89), but the solution
is not detailed and the general case (with several pots) is not mentioned. The visualization we use is a
key element in developing the proof of our results, so the proof can be viewed as a good example of visual
thinking used in arithmetic (see [3], [1]).
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Introduction

The following problem was solved by Siméon Denis Poisson using graphs in the 18
century ([7]):

A man has 12 pt? wine and he wants to give to a neighbor 6 pints but he has only a
5 pt and an 8 pt empty pot. How can he measure 6 pt to the 8 pt pot?

Poisson’s idea was to represent the possible states of the pots as vertices of a graph
while every possible filling corresponds to an oriented edge in this graph. In this way
starting from the initial state (12,0,0) one can obtain all possible states as follows. For
the first filling we have two possibilities, so we obtain two possible states: (4,8,0) and
(7,0,5). From these states we can obtain the states (0,8,4), (4,3,5),(0,7,5),(7,5,0) and
SO on.

In figure 1 we illustrated a few vertices and edges of this graph (at each level we put the
states that were not already in the graph and for the simplicity we omitted the backward
edges between different branches).

However this representation also leads to an algorithmic solution (the generation of
this graph level by level) we need a different approach in order to solve some general
problems:
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Figure 1: Poisson’s representation

a) Consider three unscaled pots, with volumes a,b and ¢ > max{a,b} liters, where
a,b € N*. Initially the third pot is filled with water and the other ones are empty.
Characterize all the quantities which can be measured with these pots.

b) Consider n 4+ 1 unscaled pots, with volumes aq,as,...,a, and a,,1 liters, where
a; € N1 <i<n+1and ap;q > 1:r1<1.a<x a;. Initially the largest pot is filled with

water and the other ones are empty. Characterize all the quantities which can be
measured with these pots.

Regarding a) in [2] the author states that ”Clearly, such a problem (with ¢ = a + b)
can be solved whenever the integers a and b are coprime”, but there is no proof of this
assertion. Hence our first aim is to give a detailed answer to a) and then to extend our
argument to the general case. After we clarify the mathematical background we present
a problem solving activity which was designed in order to investigate the solving mech-
anisms/algorithms our students use in handling such problems. More precisely we point
out that most of our students use a ”trial-error” type random algorithm (they are simply
filling randomly chosen pots and they only care about avoiding previous states). Moreover
we designed also a computer simulation which solves the problem by the same random
algorithm (in each step it randomly chooses two pots such that by filling from the first
to the second none of the previous states appears) and we observed that in all cases the
solution can be obtained in this way. This fact implies that similar problems do not re-
ally measure the combinative skills of our students but their persistence, patience and
vigilance.

A model, an algorithmic approach and some further mathemati-
cal background

Consider an a x b parallelogram in the lattice generated by a parallelogram with sides
of length 1 and having an angle of 60°. This is our billiard table and we shall study the
motion of a billiard ball which starts from the point O(0,0) and moves along the edge
OA (where A(a,0)).

As described in [2] the motion of the billiard ball on this special table gives a possible
filling sequence with the pots a,b,c. For a better understanding label the diagonals as
in figure 2 and to each lattice point P assign the coordinates of the lattice point and
the number of the diagonal passing through P. The assigned numbers correspond to the
quantity of water in the pots. The starting point corresponds to the state (0, 0, ¢), the point



Figure 2: The billiard table

A to the state (a,0,c— a) and so on. Due to the construction of the table the ball moves
along the grid lines and the diagonals and each collision point on the boundary corresponds
to an achievable state of the three pots. For a better understanding we considered a = 4,
b =7 and ¢ = 11 and we described the orbit of the billiard ball on figure 3. In this case
in every pot it can be measured every non negative integer quantity that does not exceed
the maximum capacity of the pot. Geometrically this fact means that the orbit passes
through every lattice point on the boundary. In the next section we prove the following

Theorem 1. If ¢ = a+ b and d = gcd(a,b) the orbit of the billiard ball (on the corre-
sponding table) passes through a lattice point (z,y) on the boundary if and only if d|z and
dly (gcd(a,b) denotes the greatest common divisor of a and b)

Remark 1. Ifd = 1, the orbit passes through all the lattice points on the boundary.

Remark 2. If d = gcd(a,b), every quantity which can be measured (without throwing
water away) must be divisible by d, hence the above theorem gives an answer to problem

a).

From an algorithmic point of view either we use the billiard table to generate the
sequence of states or we can formulate the following very simple strategy:

e if possible fill from a to b;
e if b is full, fill from b to ¢;
e if none of the previous steps is possible then fill from ¢ to a;

This algorithm generates the same sequence of states as the motion of the ball.
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Figure 3: The orbit of a ball and the states of the pots

Remark 3. Suppose a < b and d = ged(a,b). If we can measure d liters in the second
pot (with b liters) by filling from the first pot (with a liters) to second one x times and
by emptying the second pot y times, than ax — by = d, so our filling algorithm gives an
algorithmic solution of the linear diophantine equation ax — by = d. Unfortunately the
converse is not obvious. If we have the solutions of the equation ax — by = 1, we still need
an algorithm to obtain the desired quantities in our pots. Hence the measuring problem is
not equivalent with the diophantine equation.

If we have more pots the problem seems to be more complicated, but in fact we can use
the same visualization because in a filling step only 2 pots are involved, so if (z1, xs,. ..,
... T, Tpy1) describes the state of pots before a filling operation and (27, 25, ..., ), 2, )
after this operation, then exactly 2 components are changed. This implies that even if
we use a multidimensional visual representation (an n dimensional parallelogram), the
transformations will be represented on some 2 dimensional faces, so we can also operate
these transformations in the plane. If aqi,as,...,a,,a, 1 represents the volumes of the
pots and d; = gcd(ay, ag, ..., a;), j > 2 then we have

ds =gcd(ay, as, a3) = ged(ged(ay, as), az) = ged(ds, as)
dy =gcd(ay, asz, az, aq) = ged(ged(aq, az, az), ay) = ged(ds, ay)

and generally
djy1 = ged(dy, aj41), J =2

Consider the parallelograms with side lengths (ay, as), (as, as), (as, a4), ..., (an_1,a,) and
(an,aq) all having an angle of 60° as shown in figure 4. We consider the motion of a
billiard ball on the first table with side lengths a; and a; and we mark each collision
point on the common side of the first two tables. From each such point we consider the
motion of a billiard ball on the second table and we mark each collision point on the
common side of the second and third tables and so on. For 1 < j < n —1 denote by S; the
common side of the 5 and (j + 1)™ tables. The length of S; is a;.,. We are interested in
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characterizing all marked points on the segments Sy,.55,55,...,5,_1. In order to obtain
this characterization we rephrase our Theorem 1 as follows:

Theorem 2. If d' is a divisor of b and we consider all the orbits (of a billiard ball on the
table with side lengths a and b) starting from the points (0, kd'), where k € N and kd' < b,

then these orbits will contain the lattice point (x,y) from the boundary if and only if d|z
and d|y where d = (d', a).

This theorem guaranties that on every segment S; we mark exactly the points whose
coordinates are multiples of d;;1, hence on the segment S,,_; (with length a,,) we mark all
points whose coordinates are multiples of d = gcd(aq, as, . .., a,). Due to the symmetry
this can be extended to all segments, which means that in each pot we can measure a
quantity x if and only if d|x and x does not exceed the capacity of the pot.
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Figure 4: The unfolded faces

Due to the previous argumentation we have the following theorems:

Theorem 3. Consider three unscaled pots, with volumes a,b and ¢ > max{a,b} liters,
where a,b € N*. Initially the third pot is filled with water and the other ones are empty.

e I[fc=a+0band (a,b) = d, then in the pot with volume a we can measure 0,1 -d,2 -
d,...,a—d,a liters, in the pot with volume b we can measure 0,1-d,2-d,...,b—d,b
liters and in the pot with volume ¢ we can measure 0,1-d,2-d,...,c—d,c liters.

e [fc>a+0band (a,b) = d, then in the pot with volume a we can measure 0,1 -d,2 -
d,...,a—d,a liters, in the pot with volume b we can measure 0,1-d,2-d,...,b—d,b
liters and in the pot with volume ¢ we can measure c —a —b,c—a—b+1-d,c—
a—b+2-d,...,c—d,c liters.

Theorem 4. Consider n + 1 unscaled pots with volumes ay,as, ... ,a, and a,.1, where
ai, as, . .., a, € N* and denote by d the greatest common diwvisor of ay,as, ..., a,. Initially
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the last pot is filled with water. If an+1 > ) aj, then for each j € {1,2,...n} in the pot
j=1
with volume a; we can measure 0,1-d,2-d, ..., a;—d,a; liters and in the pot with volume
Ant1 we can measure ¢,c+d,c+2d, ..., an41 — d, aniq liters, where ¢ = ap11 — ) a;.
j=1
Remark 4. We have created a Matlab program which illustrates the motion of the billiard
ball and the corresponding states of the pots. This can be viewed at

http: //www.math.ubbcluj.ro /~andrasz/filling/animation

Proofs

In this section we prove the asserted theorems using the billiard ball’s motion and
some basic number theoretic properties.

Proof of theorem 1. The key observation in our proof is a relation between the coordinates
of the successive upper and the lower impact points. If we have an impact point on the
upper boundary segment with coordinates (a—z, 0) and the next impact point on the lower
boundary segment has coordinates (a—y, b), then y is the remainder obtained dividing z+b
with a (see figure 5). Due to this observation the coordinates of the impact points on the
lower boundary segment are the remainders obtained dividing b,2b,30b, ..., (a; — 1)b, a1b
with a, where @ = a;d and d = (a,b). But these remainders are exactly the numbers
0,d,2d,...,(a; —1)d because all of them are divisible by d and they are pairwise distinct.
This completes the proof. O

Figure 5: Relation between upper and lower impact point

Proof of theorem 2. Using the same observation as in the previous proof the coordinates
of the collision points on the lower boundary segment are the remainders of I(a — kd’)
modulo a where £, € N*. But the above remainders are exactly are exactly the multiples
of ged(d', a). O

Proof of theorem 3. The assertions of theorem 3 are a direct consequence of theorem 1
and the representation of states on the billiard table. O



Remark 5. Ifc < a+b, there are cases when not all quantities can be measured. If a = 7,
b =11 and c = 13, we can prove (using a Poisson type representation of all possible states)
that we can’t measure 1 liter.

Proof of theorem 4. From theorem 2 and the detailed construction (see figure 4) we deduce
that in the pot a; we can measure every quantity which is a multiple of d and does not
exceed a;. When using the table with side lengths a; and a4 (and the corresponding
pots) we consider that all the other pots a; with 1 < k < n are empty and a,; contains
the rest of the water. By a symmetry argument this can be extended to all pots aj;,
1 < 5 < n. We can obtain all quantities in the a,,; pot if for every combination of the
unused pots we can repeat the same steps while this fixed combination of the unused pots
is considered to be full and the rest of the unused pots are empty. O

Problem solving experience

We had been working with 10— 14 years old students and we divided them in 2 groups.
In the first group there were 60 10 — 12 years old students, while the second group there
were 60 12 — 14 years old students. The students were chosen randomly from 3 different
Romanian cities and they were asked to solve the following exercises:

1. We have three unscaled pots with 71, 171, 241 volumes. Initially the largest pot was
filled with water.

a) Measure out 1/ of water in one of the pots.
b) Measure out 1/ of water in the largest pot.

¢) Characterize all quantities that can be measured out in the pots.

2. We have three unscaled pots with 211, 34, 550 volumes. Initially the largest pot is
filled with water. Measure out 1/ of water in one of the pots.

Our problem solving activity has been designed in order to see how our students were
approaching such problems. The students had to specify not only the outcome of their
solution, but also their thoughts, attempts and failures as well. We have to mention that
we did not solve similar exercises with the students before this activity.

The puzzling nature of the problems ensures that the students could not see the
solution all at once. We expected the students to make random steps (fillings) and to
realize that they must avoid the previous states. We were hoping that the students will
be able to perform a sufficiently large number of steps before giving up. We suspected
that there will be significant differences between the results of the two groups.

In the first group there were only a few correct solutions to exercises 1/a,b, and no
solution to the exercises 1/c and 2. In the second group there were significantly more
solutions to the exercises 1/a,b, a few almost correct solutions to the exercise 1/c and no
solution to exercise 2. We were surprised because 60% of the first group and 45% of the
second group did not understand the exercises at all. Some of the students wanted to scale
the pots, others simply wanted to pour half of the water from the pot ¢ to b and some of
them wanted to pour out 1 liter measuring only with eyes. We were surprised because this
kind of mathematical problems appear in many textbooks and competitions for 10 — 12



years old children. From the first group the students who understood the mathematical
problem were not able to perform out the necessary steps. They gave it up after the
6" — 9t correct steps and they started it over by implying false ideas, similar to their
colleagues whom did not understand the mathematical problem. Probably their working
memory became full and they were unable to erase it (this idea seemed to be confirmed by
some comments the students made: "my brain has been blocked” or ”you must measure
it until you get tired”). The same phenomenon appeared in the second group as well,
however the number of correct steps made toward the result was significantly higher, and
about 23% of the students succeeded in solving 1/a,b.

None of these students realized that their choices (pouring from pot = to pot y)
were random and they didn’t try simultaneous alternative ways. Although there were
no explanation on the selection of the solution, the comments of some of the students
showed that they simply tried to avoid the previous states and at every state they have
been choosing the next step randomly (”we just have to fill the pot till the desired quantity
appears”).

By comparing the histograms for the number of correct steps we obtained, it revealed a
significant difference between the results of the two groups. The students from the second
group were able to carry out much more steps than the students from the first group.

We also observed another interesting correlation: if we consider only those students
who solved exercise 1/a and we look for a regression between the number of steps used
in the first problem and the number of performed steps at the problem nr. 2, then we get
two well correlated data sequence. This correlation showed that the students performed
20% less steps with the larger pots than with the smaller ones before giving up. Some of
the students believed (they described it in their comments) that the second exercises can
not be solved because the pots were too large. This shows that the operational skills of
our 13 — 14 students regarding addition and substraction are not yet really operational.

Concluding remarks

e The use of diagrams in solving routine or non-routine mathematical problems has
been widely studied in the literature (see [5] and the references therein). The repre-
sentation used by Poisson is a typical hierarchy (branching) structure (see [6]) while
the billiard ball representation can be viewed as a dynamical diagram. In our case
the key element of the proof is contained in the dynamical structure and it is not
present in the hierarchy structure. We believe that such dynamical diagrams can be
used with a greater efficiency in teaching/learning activities than the usual static
diagrams. It would be interesting to develop a deeper study on the effectiveness of
using dynamical representations in problem solving.

e We also wish to point out that the construction of a dynamical diagram eases the
understanding of the problem. Although the original problem is a non-routine one
(in our case), once the corresponding diagram has been understood, the problem
becomes a routine problem.

e Our problem solving activity illustrates that in many classroom activities the mira-
cle just happens, and the solution appears without further or deeper understanding



of the phenomenons, moreover our students are familiar with this sudden appear-
ance of a solution. The students are perfectly satisfied if they obtain a solution and
they seldom search the reasons behind it. This can be a major obstacle in under-
standing mathematics and in developing an active and conscious attitude in doing
mathematics.

e Our students did not balanced their possible choices and what is even worst most
of them did not realized that they have choices and that they can experiment the
effect of these choices.

e Our computer simulations show that the solution of both problems can be obtained
by random steps if we avoid the previous states (and even if we do not avoid cycles,
but the number of steps in this case is much more greater), so the failure of our
students can not be explained neither by the defective knowledge nor by the absence
of their talent or combinatorial skills. They did not have sufficient perseverance to
perform as much steps as it was needed. We hope that by understanding the nature
of this problem and the source of their failure our students realized what Jim Watson
says about persistence: ” A river cuts through rock, not because of its power, but
because of its persistence.”
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