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Play is our brain’s favorite way of learning.
Diane Ackerman

Abstract. In this short note we present a student led inquiry-based activity
built upon playing with nonstandard toy construction bricks. The main aim of
the activity was to create an environment in which well contoured mathematical
content (counting, linear diophantine equation, system of linear equations, inductive
arguments, unfolding of a cube) can be emphasized along students questions. We
used this activity with lower and upper secondary school students and also with
a group of teachers in a professional development course, with a slightly different
focus depending on the participants.
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Introduction

The necessity of using inquiry-based learning (IBL) was recently recommended
by scientific studies and reports made for the European Commission (see [4]). Sev-
eral European projects are devoted to the widespread of IBL methods (see the
ProCoNet group at http://proconet.ph-freiburg.de/). Moreover, the effects of us-
ing IBL are studied worldwide (see [6]). In the framework of the FP7 project PRI-
MAS2 a series of piloting activities were organized in Romania in order to test,
adapt and develop inquiry-based teaching materials. Most of these piloting actions
were organized by local professional communities with the purpose of creating a real
feedback for the project and for gathering professional experience in implementing
inquiry-based pedagogies in mathematics and science education. The main aim of
this paper is to present an activity where students were formulating the problems,
teachers were only creating the milieu ([3]) and facilitating the work. As a second
step the accumulated experience related to this activity was used in a PD course
organized by the Babeş-Bolyai University in the framework of the PRIMAS project.

During the activities students were working in small groups, each group had
two types of pieces shown in Figure 1 and they had to construct and plan patterns
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Figure 1: The pieces and the 5× 5× 5 cube unfolded

and 3D objects. The patterns and objects were not specified, each group decided
what to construct. One basic rule was fixed: all groups had to present all successful
and unsuccessful attempts, moreover for all the constructions it was necessary a
careful analysis. It is worth to mention that the number of pieces was relatively
small for each group (12-36), but in constructing the patterns and objects they had
to deal with an unlimited number of pieces.

Constructing patterns and 3D objects

Before our activities we organized a series of playing activities with the set of
Marble and Profi cubes (see http://www.happycube.com/ and [1]). The first 3D
object constructed was the cube, while in the plane most of the groups constructed
rectangular configurations. After these they constructed rectangular parallelepipeds
(see Figure 1), square pipes, curved square pipes and different other shapes (see
Figure 2).

Figure 2: Curved square pipe

During the analysis of the plane configurations most groups observed that if
we want to cover a certain planar region, we don’t have too much options. In fact
there exists only one possible way to fit the pieces and this arrangement gener-
ates a covering of the plane (see Figure 5). The formal proof of this fact was not
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requested, but the students formulated an inductive argument, which emphasized
that a configuration formed by 4 pieces is repeated.

Figure 3: Constructing a square pipe from the plane covering

Figure 4: Unfolded square pipe

Similar arguments were given for the construction of square pipes, moreover,
students found a connection between the covering of the plane and the construction
of the pipe. They observed that if we unfold the pipe, we obtain a strip from the
covering of the plane. This observation assures that a pipe with arbitrary length
can be constructed (see Figure 4 and Figure 3).

Using an additional argument students showed that any curved pipe can be
constructed (the ratios of straight sections can not be arbitrary, but the direction
can be changed at any step, see Figure 2). The determination of the number of
needed pieces for such a construction was also carried out by the students.

The first surprise appeared when students wanted to construct a 9×9×9 cube
(which should contain 2× 2 pieces on each side) and they failed.

Atfer a few attempts they formulated that it is impossible to construct a 9×9×9
cube (without holes). Some groups constructed a 9 × 9 × 9 cube where 2 small
(1× 1× 1) cubes from the opposite corners were missing, so they also conjectured
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Figure 5: Covering of the plane

Figure 6: Unsuccesful attempts to construct a 9× 9× 9 cube
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that this is the best approximation of the 9× 9× 9 cube with the given pieces. In
order to prove these statements student constructed the following proofs.

Proof 1. Count the total numbers of 1 × 1 × 1 cubes on the surface of the
9× 9× 9 cube. If it is possible to construct a 9× 9× 9 cube from the given pieces,
than the pieces will fill/cover exactly these 1× 1× 1 cubes. So if we use x pieces of
type I and y pieces of type II (see Figure 7), then 15x + 19y is the total number
of 1× 1× 1 cubes on the surface (including those in the corners and on the edges
of the cube). On the other hand the total number of the small cubes on the surface
is 386, so we obtain an equation for x and y.

15x + 19y = 386 (1)

Remark 1. With lower secondary school students the problem of counting the
unit cubes on the surface was not a trivial one, hence we needed to discuss several
counting techniques. Some groups decomposed the cube into disjoint parts, an upper
and a bottom 9× 9× 1 part and the rest, with height 7 and circumference composed
by 32 units. Other groups used a logical sieve technique and there were also some
other decompositions.

Type I.                     Type II.

Figure 7: The pieces of type I and II with 15 and 19 small cubes re-
spectively

Some groups considered equation (1) as a diophantine equation, determined
all nonnegative solutions and proved that these solutions are not realizable. The
only solution is (8, 14) and this would imply that there is at least one face having
3 pieces of type II, which is impossible.

Other groups observed that the number of pieces is also known, because each
face is composed by 4 pieces, so there are 24 pieces. This can be expressed as
x + y = 24, so together with (1) we obtain a system of equations, which has no
integer solutions. This implies that there is no 9× 9× 9 cube. In order to prove the
conjecture for the best approximation we need to solve also the system{

15x + 19y = 385
x + y = 24

The solutions of this system are not integers, so there is no configuration which
covers all the surface with one exception. This implies that the conjecture about
the ”best” approximation is correct. Of course this result raises the question of
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finding all such configurations. We will obtain answer to this problem from Proof
4.

Proof 2. Some groups observed that a face can be constructed only in one
way (only the configuration generating the plane covering can appear). Starting
from this they tried to combine these faces on a planar skeleton in order to obtain
the unfolded image of the cube. This matching of the unfold faces can be done in a
unique manner, so they had to verify only if their diagram is a real unfolded cube.
They found quickly a contradiction on the diagram, so they obtained a proof (see
Figure 8).

Figure 8: The only possibility for the face of a 9 × 9 × 9 cube and a
proof of impossibility

Proof 3. Other groups counted only the unit cubes on the edges and at the
vertices of the 9 × 9 × 9 cube. The number of these cubes is 92, hence the 6 faces
has to cover these cubes. But the faces are congruent (because there is only one
possible way of combining 4 pieces into a face), so 92 should be divisible by 6.
This contradiction shows that the cube can not be constructed. Moreover, each
face covers 15 unit cubes on the edges and vertices, so 2 unit cubes will remain
uncovered and these are on the edges or at the vertices.

Proof 4. One group observed that the cube has 8 vertices, while each face (as
shown in Figure 8) can cover only one, so 2 vertices can not be covered.

The above problem raised a general question: which cubes can be constructed
from these pieces. Or more generally characterize all the parallelepipeds that can
be constructed from the given pieces.

At the activities before attacking this general problem we first discussed all
the previous ideas and each group had chosen one more special case to analyze.
Moreover we changed the notations in order to handle the number of pieces. In
what follows we say that a cube is 1× 2× 3 if faces contains 1× 2, 1× 3 and 2× 3
pieces. Hence the real dimensions (in units as before) are 5× 9× 13. In general in
what follows if we say k1×k2×k3 (in pieces), this means (4k1+1)×(4k2+1)×(4k3+1)
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in units. The following particular cases were analyzed: 1×2×3, 2×2×1, 3×3×3,
4× 2× 1, 4× 4× 4, 5× 5× 5. Using the previous ideas (or combinations of them)
the following results were established (including those studied before):

• the parallelepipeds 1×1×1, 1×2×3, 3×3×3, 5×5×5 can be constructed
by using the given pieces;

• the parallelepipeds 2× 2× 1, 4× 2× 1, 4× 4× 4 can not be constructed by
using the given pieces.

Figure 9 shows a solution for the cube 3×3×3. Similar figures were drawn for
all possible constructions. For all the previous impossible cases a proof was detailed.
Based on these cases the groups formulated the following general property:

Figure 9: The construction of a 13 × 13 × 13 cube and it’s unfolded
skeleton

Theorem 1. The parallelepiped k1 × k2 × k3 can be constructed if and only if at
most one of the numbers k1, k2, k3 is even.

The proof of this property consists of two steps. In the first step we prove that
if there are at least 2 even numbers among k1, k2, k3, then the parallelepiped can
not be constructed from the given pieces. This can be done using several different
approaches. The simplest is to use the counting argument and the system of linear
equations. The number of pieces is 2(k1k2 + k2k3 + k3k1), while the number of unit
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cubes on the surface is 32(k1k2 + k2k3 + k3k1) + 2, hence we obtain the following
system: {

15x + 19y = 32(k1k2 + k2k3 + k3k1) + 2
x + y = 2(k1k2 + k2k3 + k3k1)

From this system we obtain 2y = k1k2+k2k3+k3k1+1, so if k1k2+k2k3+k3k1
is even, the solutions of the system are not integers. On the other hand if there
are at least 2 even numbers among k1, k2, k3, then k1k2 + k2k3 + k3k1 is even.
Unfortunately the fact itself that the system has integer solutions doesn’t imply
that the corresponding parallelepiped can be constructed, so we need the second
step for proving that the parallelepiped can be constructed if at most one of the
numbers k1, k2, k3 is even. Suppose k1 and k2 are odd. As in Figure 9 we can
construct the skeleton for the unfolded version by considering the column with the
alternating type I and type II pieces in the middle and the face common to the main
row and column of the diagram being k1×k2. Due to the periodicity of the covering
only the cases k3 ∈ {1, 2} need to be analyzed and this was done previously (at the
particular cases).

Remark 2. At the activities the last problem was treated only with uppers secondary
school (16-17 years old) students and teachers. At some activities with lower sec-
ondary school (14-15 years old) students we had to finish with the 13×13×13 cube.
With teachers we could discuss all the presented aspects in 4 hours, while working
with students we usually had 3 sessions, 2 hours long each.

Final conclusions

1. At such an activity the greatest problem is how to convince students to
stop playing and to start doing mathematics. This problem was controlled
successfully by the small number of pieces the students had. None of the
groups had enough pieces to construct a 9 × 9 × 9 (in units) cube, so they
were forced by the milieu to focus on the mathematization, on the modeling
of the problem.

2. We used this activity with several different groups and several different
groups of teachers. The final theorem was not formulated all the time (not
even with teachers), because other important aspects needed to be clarified
(such as the sieve method for counting, or the properties of the linear dio-
phantine equation, including the existence of positive solutions), but all the
activities had very substantial mathematical content, and this content was
developed along the questions posed (or difficulties faced) by the partici-
pants.

3. The teachers participating at the professional development course were very
surprised about the number of correct answers/arguments that can be given
to a specific problem. They understood the importance of analyzing the ideas
of students (even if at first sight they seem not effective for some reasons).
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4. The pieces we used are from a simplified set of Happy Cube type puzzle
set (for an analysis of the original set see [1]), but similar activities can be
designed also with other sets of pieces. In fact we used a trivial covering of the
plane (the covering with squares) to generate a lot of interesting questions.
This can be done starting from other coverings too (triangular covering,
hexagonal covering, pseudo regular coverings, etc.).

5. From the perspective of the learning processes and students/teachers atti-
tudes and interactions these activities were very instructive both for students
and teachers. All presented ideas, solutions, arguments, counterarguments,
examples were formulated by participants. The teachers running the ac-
tivities were only facilitating the discussions inside the groups and among
groups. In this way students had the occasion to understand (on a small
scale) how mathematics and mathematicians work. They also had the occa-
sion to compare different approaches (they developed) for the same problem
and to highlight the advantage/disadvantage of each approach. On the other
hand teachers at the PD course realized the importance of the facilitation
process, where the major focus is on what the participants can realize and
not the apriori, content related knowledge of the teacher.
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[1] András, Szilárd, Sipos, Kinga, Soós, Anna: Which Happy Cube is more diffi-
cult? (Dutch) Nieuw Arch. Wiskd. (5) 12, No. 2, 121-126 (2011).

[2] Arnold, V.I.: On teaching mathematics, text of the address at the discussion
on teaching of mathematics in Palais de Découverte in Paris on 7 March 1997,
http://pauli.uni-muenster.de/ munsteg/arnold.html

3http://simplexportal.ro

9



[3] Brousseau, G.: Theory of Didactical Situations in Mathematics: Didactique des
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