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In theory, theory and practice are the same. In practice, they are not.
Albert Einstein

Abstract. The main aim of this paper is to present an inquiry-based profes-
sional development activity about the teaching of centroids and to highlight some
common misconceptions related to centroids. The second aim is to emphasize a
major hindering factor in planning inquiry based teaching/learning activities con-
nected with abstract mathematical notions. Our basic problem was to determine
the centroid of simple systems such as: systems of collinear points, arbitrary sys-
tem of points, polygons, polygonal shapes. The only inconvenience was that we
needed practical activities where students could validate their findings and calcula-
tions with simple tools. At this point we faced the following situation: we have an
abstract definition for the centroid of a finite system of points, while in practice we
don’t even have such systems. The same is valid for geometric objects like triangles,
polygons. In practice we have triangular objects, polygonal shapes (domains) and
not triangles, polygons. Thus in practice for validating the centroid of a system
formed by 4, 5, ... points we also need the centroid of a polygonal shape, formed
by an infinite number of points. We could use, of course, basic definitions, but
our intention was to organize inquiry based learning activities, where students can
understand fundamental concepts and properties before defining them.

Keywords: centroid, centroid of point systems, centroid of polygons and
polygonal shapes, inquiry-based teaching.
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Introduction, the tasks

The use of inquiry-based learning into day-to-day teaching prac-
tice has become an important goal ([5], [2]). On the other hand the
study of problems from applications was traditionally an organic part
of mathematics ([1]), and in the last decades the applied mathematics
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acquired a greater role inside mathematics, hence the applied mathe-
matics has to have a similar role also in the teaching of mathematics
and also in the assessment. Unfortunately there are many European
countries in which neither the curricula, nor the assessment does re-
flect this. Moreover, in some countries (such as Romania) the existing
curricula is tightly fitted as content and volume to the teacher-centered
pedagogy, so it is a difficult problem to use inquiry-based learning in
an effective way (strongly related to the content without skewing the
principles of IBL). Our experience shows that if we want students to
deeply understand mathematics and science not only as a collection of
useful rules and results, but also as a basic human activity, then we
need to use a more flexible structure in content construction, which
allows to use students’ questions and curiosity as driving force.

A real inquiry-based teaching needs specially designed teaching ma-
terials, autonomous teachers who can use them and also a group of
open-minded students. In what follows we present a teaching mate-
rial which was designed by the members of the SimpleX Association
and was used during a professional development course organized by
the project PRIMAS3 at the Babeş-Bolyai University. We tested this
material with lower secondary school studens (in Băţanii Mari and
Miercurea Ciuc), with upper secondary school students (in a summer
camp at Bonţida and at the Márton Áron Highschool in Miercurea
Ciuc), with pre-service teachers (at a special course at Babeş-Bolyai
University) and with in-service teachers (at different workshops and
professional development courses). We also present some problems we
detected during the testing of this material. For a clear understanding
in what follows we refer to these groups as:

• group A: 13-15 years old lower secondary school students;

• group B: 16-17 years old upper secondary school students;

• group C: 22 years old pre-service teachers;

• group D: in-service teachers.

3Promoting Inquiry in Mathematics and Science Across Europe,
http://www.primas-project.eu
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Figure 1: The tools for the activities

Since we had 8 different activities (more than 24 hours of activity in
total) with 3 different type of participants, we do not want to focus on a
specific subgroup from an activity. We would like to give an overview
of possible approaches at different levels and to emphasize also the
mathematical content and some related misconceptions.

Our basic problem is to determine the centroid of simple systems
such as: systems of collinear points, arbitrary system of points, poly-
gons, polygonal shapes. All groups have learnt about centroid of tri-
angles at mathematics lessons, about the centroid of a solid at physics
lessons. Moreover groups B,C and D learnt about centroid of poly-
gons in general and teachers from group D also have taught this lesson
for their students. We were particulary interested in finding how this
preliminary knowledge is used during a hands on activity. For this
reason we did not provide any definition about these concepts before
the activities, all the activities were built on the participants precon-
ceptions.

In the first part of our activity we focused on the centroid of sys-
tems of points and in the second part we studied polygonal shapes.
Participants were working in groups and for the first part each group
had a set of weights (salt bags), a rod, a measuring tape, a small board
with a nail and an electronic scale (see Figure 1).

The groups had the following tasks for Part I:
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• Put 2 (unequal) weights on the rod and calculate the centroid of
the obtained system. Validate your calculations!

• Put a third weight on the rod and calculate the centroid of the
system! Validate your calculations!

• Give a general method, which can be used for any finite number
of weights on the rod!

For the second part each group had several polygonal shapes cut
out of colour paper (250g/m2) and board. Part II consists of the fol-
lowing tasks:

• Calculate or construct the centroid of the paper triangle! Validate
your calculations!

• Calculate or construct the centroid of the paper polygon! Vali-
date your calculations!

• Calculate or construct the centroid of the polygonal shapes made
of board! Validate your calculations!

• Give a general method, which can be used for determining the
centroid of any polygonal shape!

For the sake of simplicity we accepted that the validation should
be in practice, so in each case the nail has to support the system in an
equilibrium if it is positioned in the centroid.

Comment 1. The problem itself is a classical one, but it is a little bit
tricky because the students have to figure out that they can not neglect
the rod (in part I) and the board (in part II), so the real problem is
how to handle the weight of the rod (or board). It is also important
to mention that students had no previous knowledge about centroid of
planar shapes, they had only learned about the centroid of a triangle
and of a quadrilateral. Moreover, the language they use is misleading
for several reasons:

• at school students learn (in theory) about the centroid of triangles,
quadrilaterals and polygons, without making a difference between
polygons and polygonal shapes;
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• students often use other syntagma in which the concept of poly-
gon and polygonal shape are mixed up without creating misunder-
standing, such a syntagma is the area of a polygon;

• as we will see in the sequel, in the case of triangles the centroid
of the homogeneous triangular shape is the same as the centroid
of the system formed by the vertices of the triangle (having equal
weights).

The main purpose of the activities, behind the formulated tasks,
was to discover and understand the following lemma of Archimedes
(see [3]): If an object is divided into two smaller objects, the centroid
of the compound object lies on the line segment joining the centroids
of the two smaller objects.

Centroid of system of points

The first task proved to be tricky because all our groups (from lower
secondary students to teachers) calculated the centroid of a system with
two points A and B (situated at the ends of the rod) and having mass
m1 and m2. This is the point G with the properties

m1 · AG = m2 ·BG. (1)

A BG
m

1
m

2

Figure 2: The first idea

From this we obtain

AG =
m2

m1 + m2

d and BG =
m1

m1 + m2

d,

where d is the length of the rod (the distance AB). But as the proof
of the pudding is in the eating, this result needs to be validated by a
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practical test, and in all the cases this test failed (the system supported
in G was not in equilibrium). All groups had to determine the cause
of this practical fact. Lower secondary school students thought that
there is something wrong with relation (1) or with their calculations.
Students from upper secondary school thought that the rod is not ho-
mogeneous, or the supporting surface (the nail) is too small. University
students and teachers, thought that the rod is not homogeneous, or the
fact that A and B are not exactly at the end of the rod (because the
weights were hanged up) can cause this problem.

Figure 3: Something is wrong with the rod!

Some of them realized at the beginning of the activity, that some-
how they have to deal also with the rod, but during the activity they
forgot their initial idea and they got stuck in analyzing their calcu-
lations. After a few minutes (15 for lower secondary school students,
12-15 for upper secondary school students and 9-10 minutes for teach-
ers) some groups measured the weight of the rod and they started to
think about how to use this data to correct their initial answer. The
following ideas came up during the activities (we listed in parenthesis
all type of groups were the idea appeared):

a) divide the rod into two parts having weights proportional to
the initial weights and add these weights to the initial weights
(A,B,C,D);
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b) divide the rod into small, but congruent pieces, calculate the
weight of a small piece and add some small pieces to the weight
in A, the rest of the small pieces to the weight in B (C,D);

c) distribute the weight of the rod evenly between A and B (A);

d) determine the centroid experimentally (by a trial and error method
using the nail) and distribute the weight of the rod proportional
to the distances of the experimented centroid from the endpoints
(A,D);

e) calculate the centroid G of the system formed by the points A
and B with masses m1 and m2 and consider the midpoint of the
segment OG, where O is the midpoint of the rod (A,B,C,D);

f) calculate the position of G as presented above, calculate the
weight of the rod’s parts AG and BG, distribute the difference
between the weights of these parts evenly to A and B and repeat
the procedure (C,D);

g) denote by x the length of AG, where G is the centroid of the sys-
tem and consider two more weights concentrated at the midpoint
of AG, respectively BG, proportional to the lengths of AG and
BG (A,B,C,D)

h) concentrate the mass of the rod into it’s midpoint O and calculate
the centroid of the system GO, where G is the center of mass for
the system {A,B} having masses m1,m2 (B,D)

i) The moment of the weight forces F1, F2 and F has to equal to
the moment of the force F1 + F2 + F localized at the centroid
(B,D).

At our activities the main strategy was to discuss the incorrect
ideas first and then to give the opportunity for the groups to formulate
other ideas. The correctness of the ideas was validated in practice (see
Figure 8.). Moreover we compared the details of calculations belonging
to the different ideas. This seemed to be important for several aspects:
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a) to understand that behind every formal calculation there are
some ideas and these ideas usually needs to be clarified before
starting calculations;

b) to emphasize that there is no unique good way of solving the
problem;

c) to compare the volume and complexity of calculations belonging
to different ideas;

d) when working with several masses, this comparison was necessary
in order to emphasize the fact that we can group the masses in
any possible way.

We analyzed all ideas formulated by the groups using a discussion
among groups. When working with teachers, we presented some of the
ideas from previous activities (when we were working with students)
and we asked them to analyze these as students’ answers and to develop
a strategy for helping students in understanding their mistakes and in
finding a possible good solution. A good example of such a task is
to explain why c) gives the correct answer. This task created a very
unpleasant situation for teachers: they saw that the idea is working,
the result is correct, but they were not able to give a quick (10 minutes)
explanation.

When we worked with students, we started with eliminating some
ideas by experimenting them (calculating the centroid and validating
the calculations in practice) and by finding arguments against them. As
an example for c) we asked why to distribute evenly the weight between
A and B? Find a case when this idea would give a correct answer! The
answer was that if m1 = m2, then this idea is working, the centroid
is the midpoint of the rod. This led the groups to focus on a possible
strategy for the distribution of the weight of the rod. From this we
obtained a), d) and f). For e) students also gave a special case when
this idea is working, this is the case when m1 +m2 is equal to the mass
of the rod, but they dropped the idea because the result obtained was
not correct in practice. From this special case some groups developed
h). b) and g) were also formulated from studying the break-up of the
weight of the rod. On the other hand, a) gives the same point as the
initial incorrect reasoning, d) needs the experimental determination of
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the centroid (and this could be unavailable if the system is too heavy
and the centroid is needed in order to lift up the system), so only
b), c), f), g), h) and i) needs a deeper analysis. In what follows we
reproduce the calculations for these cases. First we discuss g), which
was discovered in all groups, after this we detail the solutions given by
upper secondary school students and teachers. After this we follow the
calculations for c), which appeared only with lower secondary school
students (and seemed unnaturally for teachers) and finally we discuss
the ideas that didn’t appear in groups A and B.

g) The mass of the piece AG is x
d
m, while the mass of piece BG

is d−x
d
m, where m is the mass of the rod. The pieces AG and BG are

homogeneous, so their weight can be considered as acting in there mid-
point (see Figure 7). From these considerations we obtain the following
equation:

m1 · x +
x

d
m · x

2
= m2 · (d− x) +

d− x

d
m · d− x

2
.

A BG

C
m1 m2D

{ x

{

x/2

{

( ) 2d-x /

{ d-x

Figure 4: A promising choose of variables

This relation implies

AG =
m2 + m

2

m1 + m2 + m
d and BG =

m1 + m
2

m1 + m2 + m
d.

h) Consider G1 the centroid of the system {A,B} with masses m1

and m2 and concentrate the mass m1 +m2 into G1. Suppose m2 > m1.
In this case G1B = m1

m1+m2
d. The rod is homogeneous, so its mass m

can be concentrated into it’s midpoint O. If G is the centroid of the
system {O,G1} with masses m respectively m1 + m2, then according
to our first idea we have:

GG1 =
m

m1 + m2 + m
OG1 =

m

m1 + m2 + m

m2 −m1

m1 + m2

d

2
,
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because OG1 = d
2
−G1B = m2−m1

m1+m2

d
2
.

A BO
m

1
m

2

G1

m m
1
+m

2

G

Figure 5: Grouping the weights

But BG = BG1 + G1G, so we obtain

BG =
m1

m1 + m2

d +
m

m1 + m2 + m

m2 −m1

m1 + m2

d

2
=

m1 + m
2

m1 + m2 + m
d.

This is the same result as using idea g).

Remark 1. For simplicity in what follows we denote by X(u) the mass
u located at X.

Remark 2. We obtain the same result if first we group A(m1) with
O(m) and then we calculate the centroid of the system G2(m1+m), B(m2),
where G2 is the centroid of the system {A(m1), O(m)}.

i) Consider X an arbitrary point outside the segment AB such
that B ∈ (AX) and denote BX = l. The sum of the moments of
the weight forces located in A, B and the midpoint of AB is M =
m1 · (d + l) + m2 · l + m · (d

2
+ l). If the distance of the centroid from

B is x, then we must have

M = (m1 + m2 + m)(x + l),

so we obtain

BG =
m1 + m

2

m1 + m2 + m
d,

which is the same result as in the case c), g) or h).
c) If we distribute the mass of the rod evenly, we have a system of

two points (A and B) with masses m1 + m
2

and m2 + m
2

(see Figure
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6). Repeating our first argument for the centroid G of this system we
obtain

AG =
m2 + m

2

m1 + m2 + m
d and BG =

m1 + m
2

m1 + m2 + m
d,

which is the same result as in the case g) or h).

A BG
m

1
m

2
m

2
+

m

2
+

Figure 6: Distribute evenly the mass of the rod

b) It is clear that we obtain only an approximation of the centroid
and this approximation is depending on the size of the small pieces.
Suppose we divide the rod into n small pieces. The mass of each is
m
n
, where m is the mass of the rod. If for the centroid G we have

AG = k
n
· d, for some integer k ∈ {1, 2, . . . , n}, and we consider that

the mass of each small piece is concentrated in the furthest endpoint
of this piece with respect to G, then we obtain

m

n
·d
n

+
m

n
·2d
n

+. . .+
m

n
·kd
n

+m1
kd

n
=

m

n
·d
n

+
m

n
·2d
n

+. . .+
m

n
·(n− k)d

n
+m2

(n− k)d

n
.

From this relation expressing k
n
, we get:

k

n
=

m
2

+ m2 + m
2n

m1 + m2 + m + m
n

.

This gives a good estimation for the position of G if n is sufficiently
large. It is clear that k depends on n and if n → ∞, then k

n
tends to

the exact value of AG/d.

Remark 3. The localization of the weight forces for the small pieces
can be chosen to act in arbitrary point of the piece. This will influence
the value of k

n
, but not the limit of this expression as n→∞.

11



A BG
m1 m2

{ k { n-k

Figure 7: Decompose the rod into small pieces

f) If we denote by m1(k) and m2(k), the values of the weights in
the kth step, then we have{

m1(k + 1) = m1(k) + 1
2
m2(k)−m1(k)
m1(k)+m2(k)

·m
m2(k + 1) = m2(k) + 1

2
m2(k)−m1(k)
m1(k)+m2(k)

·m
, where m1(1) = m1 and m2(1) = m2.

Using a computer program (for calculating the terms of these sequences)
we can check that this idea is not working. However this idea was not
helpful for our initial problem it raises a very interesting question: how
to construct the centroid by a recursive algorithm (where one step of
the algorithm has some intuitive meaning)? This kind of idea is very
useful for treating the general case.

Figure 8: Validating the calculations

Comment 2. We want to focus on the following two aspects:
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1. Case a) shows how the idea of proportionality (which is often
used in connection with the calculation of centroid for a system of two
points) used without a deeper background can lead to a misconception.
A similar problem induced the incorrect ideas d) and e).

2. In practice an extra effort is needed in order to make a connec-
tion between the abstract notions and tools (centroid, force, moment)
and the real objects you are handling. Sometimes this is not an easy
task, because in creating the abstract definitions, some aspects were ne-
glected, or restructured, hence you have to clarify what was neglected,
what was restructured. On one side this is a major hindering factor
in planning IBL activities using advanced mathematical and scientific
notions. On the other hand this clarification gives the deepest under-
standing of these notions. This shows that teachers who never taught at
this level of understanding, will have serious problems in implementing
IBL.

For the second task of Part I the groups discussed all the ideas
they formulated (groups C,D also discussed ideas provided by us from
previous activities with groups A,B) and made a comparison between
the volume of calculations and the complexity of reasoning. From the
first sight only c), g), h) and i) seemed to be suitable for obtaining a
simple general algorithm/method. b) and f) were also analyzed, but
only by the groups of university students. For high school students
these ideas seemed to be too complicated and for teachers they seemed
less teachable.

The shortest and clearest solution was found by extending i). If X
is an exterior point, then the moment of the weight forces F1, F2, F3

and F has to equal the moment of the force F1 +F2 +F3 +F localized
at the centroid of the system. If we denote BC = k ·d, AC = (1−k) ·d,
BX = l and BG = x (where G is the centroid of the system), we obtain
the following equation:

m1·(l+d)+m2·l+m3·(k·d+l)+m·
(
d

2
+ l

)
= (m+m1+m2+m3)·(l+x),

hence

BG =
m1 + k ·m3 + 1

2
m

m + m1 + m2 + m3

d and AG =
m2 + (1− k) ·m3 + 1

2
m

m + m1 + m2 + m3

d.
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BG
m

1 m
2

C

m
3

XA O

m

Figure 9: Using an exterior reference point for the moments of the
forces

Remark 4. The above formulas (and also the reasoning) show that XG
is in fact the weighted arithmetic mean of the distances XB,XC,XO
and XA with the weights m2,m3,m and m1.

This result shows that c) is providing the correct answer if we
distribute the mass of the rod evenly between A and B, but it is no
longer about distributing the mass of the rod evenly between all the
points (A,B and C). For this reason using this idea in other situations
may lead to a misconception. On the other hand this gives a hint
about why c) leads to a correct result. In fact the mass of the rod is
replaced by two pointwise masses such that the centroid of these two
points and the total mass coincide with the centroid and total mass of
the rod. This may lead to a series of questions about decomposition of
given systems. This is in fact the inverse problem of what we originally
posed.

Using g), we denote AG = x. In order to write the moments of
the forces we have to deal with two different cases G ∈ (AC) and
G ∈ (CB). The equations in these cases are equivalent, but the formal
argument can be incorrect because if we suppose G ∈ (AC) and from
the obtained value for x we have G ∈ (CB), then the argument is
formally incorrect. In fact this is not a problem, because the equations
for the two cases are equivalent, but this has to be clarified. If we use
a different notation e.g. CG = x, we can obtain a negative value for
x, which needs an interpretation. This analysis is helpful if we want to
use a vectorial approach, but otherwise in the general case (with more
weights) can create problems for the students.

Using h) we have a lot of possibilities. We can construct the
centroid G of the system {A(m1), B(m2), O(m)} as in the first task
and then simply calculate the centroid of the system {G(m1 + m2 +
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m), C(m3)} or we can use any other partition. If G1 and G2 are the
centroids of the systems {A(m1), C(m3)} and {B(m2), O(m)}, then the
centroid of the system {G1(m1 + m3), G2(m2 + m)} is the centroid of
the initial system. Moreover the given masses can be decomposed in
several smaller amounts.

All the previous possibilities need to be experimented in order to
understand that if we decompose our system in any possible way into
disjoint subsystems, the centroid of the subsystems’ centroids is always
the centroid of the initial system. For simple systems (having 2, 3 or 4
point masses) we studied all possible decompositions where the initial
masses were not decomposed. This was a crucial step for the students
in order to formulate a rudimentary version of Archimedes’s lemma
(see the next remark). In all the cases the comparison of the results
can be done by the general formula, by the numeric values or simply
by validating the result in practice. At our activities we used all these
methods.

Remark 5. As the most important conclusions we can formulate the
definition for the centroid of a system of n collinear points A1(m1), . . . , An(mn)
and the lemma of Archimedes about the centroid of subsystems:

• If the points A1(m1), . . . , An(mn) are on the same line and X is
a fixed, but arbitrary point of this line, then for the centroid G of
the system the {A1(m1), . . . , An(mn)} we have

xG =
m1 · xA1 + m2 · xA2 + . . . + mn · xAn

m1 + m2 + . . . + mn

,

where xP denotes the coordinate of the point P with respect to
the origin X.

• If the system S = {A1(m1), . . . , An(mn)} is decomposed into dis-
joint subsystems S1, S2, . . . , Sk, whose reunion is S and whose
total mass equals with the total mass of S, then the centroid of
the system formed by the centroids of the subsystems (with the
corresponding masses) is the centroid of the initial system S.

If S consists of collinear points, the lemma of Archimedes is a direct
consequence of the basic properties of operations (commutativity and
associativity of summation and distributivity of product with respect to
the sum).
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C
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xA xC xG xB

O

xO

yA

C

yO

yB

yG

y

Figure 10: The centroid of a collinear system of points

Comment 3. If we place the points S = {A1(m1), . . . , An(mn)} in
a coordinate system, such that the line A1A2 . . . An is different from
the coordinate axis, we can calculate the coordinates of the centroid in
the same way (see Figure 10). If the points are not collinear, we can
calculate the coordinates of the centroid by using equivalent systems.
Figure 11 shows a possibility to rearrange the points such that the x
coordinate of the centroid remains the same. Working with group C,
we validated in practice these equivalent transformations during some
extra activities, in order to achieve a better understanding of why the
coordinates can be treated separately.

B

G

m
2

C m3

xC xG xB

B

G

m
2

C

m3

xC xG xB

m
1

A

xA

m
1

A

xA

yA

yB

yG

Cy

Figure 11: Equivalence in one direction
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Comment 4. Looking from the viewpoint of the content, someone
might say ”Much ado about nothing, these two properties can be pre-
sented in half an hour”. On the other hand the activity is richer than
the content listed above, creates a lot of links to further and deeper
understanding and study (to lemma of Archimedes in more general
setting, to proofs based on Archimedes lemma, to recursive definition
of the centroid, to the abstract definition using integrals, to the under-
standing of the necessity of a vectorial treatment, etc.). Moreover, such
an activity creates a rich context in which student can understand that
well-known pieces of knowledge are rooted in his own thoughts, he can
compare the effectiveness of his own ideas with other approaches.

Our experience with students (and also with teachers) is that even
if they know all the abstract notions and properties, they rarely can
solve the tasks of Part I at the first attempt.

Centroid of polygonal shapes

The first task of Part II was to determine the centroid of the paper
triangle. All participants constructed the centroid of the triangle using
one or more medians and they validated their construction with the
given tools. On the other hand (as the later analysis pointed out),
almost none of them thought about the difference of the triangle and
the triangular shaped paper. Based on this achievement all groups
constructed the centroid of the quadrilateral shape as the centroid of a
quadrilateral. But this time the practice gave an unfavorable verdict,
the centroid of a quadrilateral shape is usually not the same as the
centroid of the quadrilateral.

This caused a major surprise for teachers and also for students,
some of them realized that the argument for triangle was also un-
founded. In the next step they determined experimentally the centroid
and tried to give some explanation for their findings. Some groups ob-
served that the centroid of a quadrilateral shape ABCD is on the seg-
ment joining the centroids of the triangles ABC and ACD (see Figure
12). This observation allowed to remember the lemma of Archimedes in
order to decompose the quadrilateral shape into two triangular shapes
and hence to see the centroid G of the quadrilateral shape as the cen-
troid of the system G1(m1), G2(m2), where m1 and m2 are the mass
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A

B

C

D

G

G
1

G
2

Figure 12: G is experimentally determined, G1 and G2 are the centroids
of ABC and ACD.

of the triangular shapes ABC and ACD. Since the paper (and the
board) are (almost) homogeneous, the masses of these triangles are
proportional to their area, and this can be calculated by using Heron’s
formula, if we measure the side lengths of the triangles. This was the
solution of several groups. Other groups observed that the quadrilat-
eral can be divided into triangles in two different ways, so the centroid
has to be on two different lines. This gives a more elegant construc-
tion: if G1, G2, G3 and G4 are the centroids of the triangles ABC,
ACD, ABD and BDC, then the centroid of the quadrilateral shape is
the intersection point of G1G2 and G3G4 (see Figure 13). Based on the

A

B

C

D

G
G

1

G2G3

G4

Figure 13: The centroid of a homogeneous quadrilateral domain

lemma of Archimedes we can define (and also determine in practice)
the centroid of polygonal shapes and more generally the centroid of
planar figures, which can be decomposed into simpler figures, whose

18



centroid is known. If A0A1 . . . An is a convex polygonal shape with
(n + 1) vertices, the centroid G of this figure is the centroid of the
system Gn(m1), G

0
n(m2), where Gn is the centroid of the polygonal

shape A0A1 . . . An−1, G
0
n is the centroid of the triangle A0AnAn−1, and

m1, m2 are proportional to the area of the polygon A0A1 . . . An−1 and
of the triangle A0AnAn−1. Moreover, all the lines GkG

0
k, 0 ≤ k ≤ n

constructed in a similar way are concurrent in G.
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a) b)

Figure 14: The centroid of a quadrilateral shape and of a quadrilateral

Comment 5. If the polygonal shape A0A1 . . . An is not convex, we
have several options. We can decompose it into smaller convex shapes,
or we can add other shapes to it in order to obtain a convex shape. The
second method is specially useful in understanding negative weights.

If A0A1 . . . An is a polygon, the centroid of the system of equally
weighted points {A0, A1, . . . , An} is called the centroid of the polygon
and can be constructed in a similar inductive way. The centroid of
the polygon A0A1 . . . An is the centroid of the system {Gn(n), An(1), }
where Gn is the centroid of the polygon A0A1 . . . An−1. In Figure 14
we illustrated the construction of the centroid of a concave quadri-
lateral shape and of a concave quadrilateral, while in Figure 16 the
construction of the centroid for a pentagonal shape and a pentagon.
On Figure 14/a) G1, G2, G3 and G4 are the centroids of the trian-
gle ABD,BDC,ACD and ACB respectively, while on Figure 14/b)
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G1, G2, G3 and G4 are the midpoints of the segments AD,BC,AB and
CD. These figures show that the centroid can lie outside the polygonal
shape. In this case the validation of the construction in practice is a
little bit tricky, because the nail can not support the board in a point
which is outside the board. At our activities this problem proved to
be a hard one. Only a few participants gave a good solution. Their
solution was mainly the same: they constructed a bigger system S us-
ing an other board (triangular) and they calculated the centroid of the
system S using the centroid of the concave quadrilateral shape.

Figure 15: Finding a support point

Comment 6. The previous arguments show that in order to under-
stand the notion of centroid of a polygon and of a polygonal shape
(which are usually different) four crucial steps (ingredients) are neces-
sary:

• the centroid of the triangle (which is the same as the centroid of
the triangular shape);

• the centroid of a quadrilateral and of a quadrilateral shape;

• the lemma of Archimedes;

• the construction of an inductive argument as a defining tool.
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Figure 16: The centroid of a polygonal shape and of a polygon

Figure 17: Construction of the cen-
troid for a polygonal shape

Using a similar reasoning the no-
tion of centroid of a system of
points can be constructed induc-
tively, adding one point to the pre-
vious system in each step. Unfor-
tunately the second and the third
key ingredients are not included in
the Romanian curricula, the cen-
troid of any planar figure (bounded
by curves) was recently removed
from the mathematics curricula in
the upper secondary, while the cen-
ter of mass for arbitrary system of
points is included in the physics
curricula. This is a typical situ-
ation: many interdisciplinary IBL
activities based on the notions in-
cluded in the curricula should also
handle other notions and proper-
ties, which are not included in the
curricula.
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This proves that in order to include IBL and interdisciplinary ap-
proaches into the teaching practice, a strong correlation of the scientific
curricula and a deep analysis of the content from an IBL teaching per-
spective is needed.

Figure 18: Validation for the centroid of a polygonal shape

At the end of our activities we raised more problems for the par-
ticipants. We discussed these problems in further sessions. Here we
don’t detail these discussions or the solution of these problems.

• Find the centroid of the triangle, if the sides are homogeneous
rods!

• Find the centroid of a polygonal curve, if the sides are homoge-
neous rods!

• Find the centroid of a triangular board from which we cut out
the disc determined by the incircle!

• Find the centroid of a polygonal shape having some weights in
different points!

• Design a pentagonal carousel for a group of 5 people!

• Study all the previous problems (those solved during the activity
and the proposed ones too) if the weights can be negative!

• ([6]) Five points are given on a circle. A perpendicular is drawn
through the centroid of the triangle formed by three of them, to
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the chord connecting the remaining two. Similar perpendiculars
are drawn for each of the remaining nine triplets of points. Prove
that the ten lines obtained in this way have a common point!

• (only for teachers) Find applications in geometry for the lemma
of Archimedes and for this framework of centroids.

Final conclusions

1. All the presented ideas and solutions were produced during the
activities by the different groups, the authors of this paper only
unified and structured them.

2. The participants realized that their ideas can be (and usually are
already) incorporated in deep mathematical concepts and prop-
erties.

3. Two main hindering factors were identified in relation with plan-
ning IBL activities: the differences between theory and practice in
some cases (some abstract notions need to be ”de-abstractified”)
and the possible IBL gaps in the content.

4. During these activities we could closely track the formation and
the clarification of some misconceptions (the evenly distributed
mass, the centroid of planar domain). These processes are closely
related to IBL. Most of the group

5. The activity presented here shows how inquiry-based learning is
working when highly specialized abstract notions are attacked
in practical activities. From this point of view the content it-
self in this activity is not as important as the processes the stu-
dents/teachers are going through. On the other hand the content
can not be neglected from the point of view of practicing teach-
ers. For this reason in this paper we presented the ideas that
appeared at our activities and the final results of some discus-
sions. We do not focus on individual participants, we describe
only a general pattern concerning processes. At the beginning
all participants (even those from group A) were convinced that
the tasks are trivial based on their ”theoretical” knowledge. The
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surprise appeared when nobody succeeded at the first attempt.
This created an amount of frustration (is it a tricky rod?, we
don’t remember the ”formulas”, we made a mistake during the
calculation, etc.) and led to a series of questions and ideas that
needed a deeper analysis in order to fit the practice with the cal-
culations. The mathematical content was developed through this
analysis. It was very important that there was an easy way (the
practice) to validate or to drop each idea and finally to obtain the
desired results that were valid in practice, correct in calculations
and based on some fundamental theoretical ideas.
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lakultúra, 2010/12

4Promoting inquiry in Mathematics and science education across Europe, Grant
Agreement No. 244380

24



[3] Tom M. Apostol and Mamikon A. Mnatsakanian: Finding Cen-
troids the Easy Way, Math Horizons, Vol. 8, No. 1 (September
2000), pp. 7-12

[4] Caius Iacob: Matematică aplicată şi mecanică, Editura
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