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1 Introduction

The compartment models and Markov chain models are very often
used to describe the absorbtion of drugs in the human body (see [8],
[6], [7], [5] [10]). Real-life drug administration encounters a wide range
of problems which can be tackled by mathematical models, for exam-
ple: the estimation of parameters, the use of incomplete data ([12]),
the controlling of drug administration ([9]), etc. In biology the mathe-
matical models usually have the role of basic laws (such as the princi-
ple of thermodynamics in physics), but a given biological phenomena
can be modelled by several mathematical models. The main scope
of our activities was to study several mathematical models for drug
absorbtion and to compare the developed medication schemas (each
based on a different model) starting from a given data set ([11]). We
used the problem described in Appendix A and we used four different
compartment models (for the model specifications see the appendix).

In all descriptions we denote by y(t) the amount of theophylline in
the blood and by z(t) the amount of theophylline in the liver where
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that is the case. We assume that the total quantity of blood is not
changed by a few injections, so if we consider the total amount of blood
as a unit quantity, then y(t) and z(t) also represent the concentration
of this drug in the blood respectively in the liver. The simplest model
is to consider a single compartment (the blood, in this case). If we
denote by k1 the rate of absorbtion, then in the interval [t, t + ∆t]
(with very small ∆t) from the initial amount y(t) the organism uses
k1y(t) · ∆t, so we have the following equation

y(t + ∆t) = y(t) − k1y(t) · ∆t. (1)

This implies (for ∆t → 0) the following differential equation

y′(t) = −k1y(t) (2)

with the solution y(t) = ae−k1t.
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Figure 1: Compartment model with 1 compartment

y t( )

k z t( )2

k y t( )3

k y t( )1

4

z t( )

k z t( )4

Blood

Liver

Organism

Organism

Figure 2: Compartment model with 2 compartments

From the second specification we obtain (as in the first case) the
following system of differential equations:

{

y′(t) = −(k1 + k3)y(t) +k4z(t)
z′(t) = k3y(t) −(k2 + k4)z(t)

(3)
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This is a homogeneous linear system with constant coefficients which
has the solutions y = c1 · e

r1t + c2 · e
r2t, where r1 and r2 are the roots

of the equation

r2 + (k1 + k2 + k3 + k4)r + k1k2 + k1k4 + k3k2 = 0. (4)
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Figure 3: External dosing in a 1 compartment model

From the specification of the third case we deduce the differential
equation

y′(t) = −k1y(t) + p(t).

We considered that p is a constant function, so the solution of the
equation is y = a · ebt + y0, where y0 ∈ R.
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Figure 4: External dosing in a 2 compartments model

In the last case we obtain the following system:
{

y′(t) = −(k1 + k3)y(t) +k4z(t) +p(t)
z′(t) = k3y(t) −(k2 + k4)z(t)

(5)

If we assume that p is a constant, we obtain the solutions

y = c1 · e
r1t + c2 · e

r2t + y0.

In order to answer the given questions the students were expected
to fit the models to the given data using regression analysis and then
to develop (by numerical experiments or by formal calculations) the
required medication schemas.
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2 Student background and getting started

Due to the complexity of the problem we involved not only high school
students but university students too.

Before starting the main activities (for solving the proposed prob-
lem) we had to organize a few special classes to prepare the back-
ground:

• for the high school students we needed to introduce basic notions
of mathematical analysis (limit, derivative, differential equa-
tion), regression analysis (parameter estimation, curve fitting)
and we also needed to develop some skills in manipulating spe-
cial softwares (Excel - solver, curve fitting);

• for the university students (who already had a first course on
differential equations) we needed lessons on regression analysis
and the use of computer softwares (Excel).

These preparations required 6+4 classes for the high school stu-
dents and 4 classes for the university students. These lectures were
held in 3 weeks. All the activities were organized in a traditional set-
ting, without any special assessment. At the end of each activity our
students were able to handle the main concepts and tools, to use them
in simple modelling tasks.

For the main activity we organized four groups, so each group had
its own model. The groups were composed by 3−4 university students
(freshmen/19 years old) and 2− 3 high school students (16− 18 years
old). Each group had a computer for calculations (calculations were
made in Excel) and a video projector for the oral presentation of the
results. During the preparatory activities the students got acquinted
with the models (the differential equations and the solutions of these
equations), but they did not know about the questions they had to
answer. The activity was supposed to take in 2 − 3 hours, but it
actually took 5 and a half hours. During this period we answered any
technical question but we tried not to influence the groups in designing
and structuring their calculations. At the end each group made an oral
presentation based on their own Excel sheet.
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3 Solutions and maladjustments

I. model. Outline of the expected solution. The requested
function has the explicit form f(t) = a · ebt, so a = f(0) and b can
be determined from the measured data. Using regression analysis
we obtain a = 10 and b = −0, 167. In the time period [0, T ] the
concentration can be described by the function f1(t) = a · ebt. At
moment T the concentration is a · ebT and the patient gets a further
dose D, so the concentration becomes D/6 + a · ebT . In this way in
the time interval [T, 2T ] the concentration can be described by the
function f2(t) =

(

D/6 + a · ebT
)

· eb(t−T ).
By a very similar argument we obtain for the interval [2T, 3T ] the

function f3(t) = (D/6 + f2(2T )) · eb(t−2T ) and generally (by a recur-
rence relation)

fk(t) =
D

6
·
1 − ekbT

1 − ebT
· eb(t−(k−1)T ), t ∈ [(k − 1)T, kT ).

If L1 and L2 is the lower, respectively the upper limit, from the con-
ditions L1 ≤ fk(t) ≤ L2 we obtain:

L1 ≤
D

6
·
1 − ekbT

1 − ebT
· ebT <

D

6
·
1 − ekbT

1 − ebT
≤ L2. (6)

By setting k → ∞ and solving the obtained system of inequalities we
get:

1

b
ln

(

1 −
D

6L2

)

≤ T ≤ −
1

b
ln

(

1 +
D

6L1

)

,

so for the existence of a real T we must have D < 6(L2 − L1). If we
fix the length of the interval (T ) we can calculate a minimal and a
maximal dose corresponding to this interval:

6L1 ·
1 − ebT

ebT
≤ D ≤ 6L2 ·

(

1 − ebT
)

(7)

and T must satisfy the inequality T ≤ 1
b
ln L1

L2

. For the given data we
obtain a = 9, 8637 and b = −0, 1696 and so the maximal value of T
is approximately 6, 57. So for T ∈ {1, 2, 3, 4, 5, 6} we can make the
following table (the values are rounded to 2 digits):
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Time interval
between doses, 1 2 3 4 5 6
T (hours)
Minimal dose 5,55 12,12 19,90 29,13 40,05 53,00
Maximal dose 14,03 25,88 35,89 44,33 51,45 57,46

To have a more realistic image about the phenomena we illustrated
a few medication schemas. In figure 5 and 6 one can see that the
system tends to a periodic solution, the period of which is the length
of the time interval between doses (T ). The dose influences the values
of this periodic solution (with the minimal dose the concentration
attains the lower clinical limit L1 at the end of every period of length
T while the upper clinical limit is attained with a maximal dose at
the beginning of every period T ). Figure 6 shows also that for some
T the concentration can be smaller than the lower clinical limit in the
first few periods.

0 5 10 15 20 25 30
0

5

10

15

Lower clinical limit

Upper clinical limit

Long-time behavior

T=1
T=2 T=3

Figure 5: Medication schemas for T ∈ {1, 2, 3} and a minimal dose

In figure 7 we can see what happens if we fix T and we increase
the dose (from the minimal value to the maximal value). With the
minimal dose the concentration reaches the lower clinical limit in each
time period (and it is possible not to reach the upper clinical limit)
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Figure 6: Medication schemas for T ∈ {4, 5, 6} and a minimal dose

and with the maximal dose the concentration reaches the upper limit
L2 (after a few periods of length T ).

To avoid the first few periods in which the concentration may be-
come lower than L1 we can use a starting dose S and then a fixed dose
D. In this case

fk(t) =

(

S

6
e(k−1)bT +

D

6
·
1 − e(k−1)bT

1 − ebT

)

· eb(t−(k−1)T ),

so from the conditions L1 ≤ fk(t) ≤ L2, for all t ∈ [(k − 1)T, kT ] we
obtain the same minimal and maximal dose as in the previous case
and for the starting dose we get

6L1e
−bT ≤ S ≤ 6L2,

where T ≤ 1
b
ln L1

L2

.
Figure 8 illustrates the effect of the starting dose on the variation

of the concentration. We can observe that the starting dose has no
influence on the long-time behavior of the solution.

The group’s solution for this model. The answer to the first
question was correct (and it was obtained using the Excel’s curve fit-
ting options). A part of the medication schemas they obtained (with
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Figure 7: Increasing the dose for fixed T
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Figure 8: The effect of the starting dose
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or without starting dose) was also correct, but they gave incorrect
schemas too. Their tables did not contain the maximal and the min-
imal dose for a fixed T, but for correct values of T, their dose was in
between the corresponding minimal and maximal dose. The team did
not calculate the explicit form of the function fk : they obtained only
the recurrence relation and they calculated the values of this function
in (k − 1)T and kT. As a consequence they could not use inequality
(6) analytically. At this stage they turned to a numerical experimen-
tation. For fixed T and D they calculated the concentration in kT
and they found some values for which the dosing schema seemed to
be good. Unfortunately they had not observed the upper limit for
T and so they gave also uncorrect schemas. This error occurred ba-
sically because for every moment kT they calculated only one value
(the value of fk(kT ) without fk+1(kT )). Due to the numerical point
of view they couldn’t handle all values fk(kT ) (they only tackled a
few values which covered just 1-2 days of medication), so they did not
calculate the maximal respectively the minimal doses. �

Student behaviors. All the members were much engaged in
the activity, they started their calculations only after a half an hour
brainstorm. The students were working assiduously for more than 3
hours and they had no questions during the activity.

Concluding remarks for the first group. The oral presenta-
tion of the first group was clear, but it did not contain the basic key
elements of the phenomena (the periodicity of the long-time behavior,
the necessity of the starting dose, the effect of the starting dose). The
main difficulty of their activity was that they were unable to combine
the numerical techniques with the formal calculations, they wanted to
obtain the results only by numerical experimentations.

II. model. Expected solution. The students were expected to
discover that the given data is not sufficient to give a correct and ver-
ified answer or in the worst case to reduce their model to the first one
using regression analysis for the given data. This is possible because
if we look for a regression function of the form f(t) = c1e

r1t + c2e
r2t,

we obtain (using Excel’s Solver function)

r1 = −0, 171730399, r2 = −0, 171730399, c1 = 4, 976891104
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and c2 = 4, 976891104. Hence the function is

f(t) = 9, 953782209e−0,171730399t

(because r1 and r2 are very closed).

5

10

15

0 10 20 30 40 50 60

0

-2

Upper clinical limit Correct medication schema

Incorrect schema

Drug concentration in the liver for the correct medication schema

Impossible concentration values in the liver for an incorrect schema

Figure 9: Dosing in the compartment model with 2 compartments

If r1 6= r2 we need to solve a Cauchy problem on each interval
[kT, (k + 1)T ) but we do not have sufficient data to estimate all the
parameters of the model because the given data concern only one
of the compartments. Figure 9 shows a correct medication schema
for this model based on a sequence of Cauchy problems and also an
uncorrect medication schema based on a similar reasoning the students
have used. Although the same phenomenon appears in all the models
(upper bound for T, the asymptotically periodic solution, necessity of
the starting dose, ...) the calculations are different for these models
and may become very complicated if we use a multiple compartment
model.

The group’s solution for this model. The second team used a
geometrical motivation to derive the function f2 from the function f1.
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Obviously they did not have sufficient data to generate the Cauchy
problems for each time period T. They considered that the graphs of
the functions fk can be obtained from the same curve by translation.
This idea works only for the first model, not for the second model,
hence the reasoning of the second team was completely wrong. How-
ever the numerical values they obtained were almost correct. Their
results were also obtained by numerical experimentation, so they had
problems with the validation of the results. The only validation was
the comparison between teams. �

Student behaviour. It was very interesting that they needed a
very long time (more than 2 hours) to give up the idea of finding some
explicit formulas for the function f2 in the case r1 6= r2 and to con-
centrate just on the special case they obtained. At the beginning they
were not looking for a minimal and a maximal dose for a fixed T but
for a minimal and a maximal T in the case of a fixed D. After the pre-
sentation of the first team they changed this and in their presentation
they used the same structure as the first team. This change of vari-
ables was performed because initially they didn’t obtain medication
schemas for T > 6. Unfortunately by choosing T > 6 they obtained
invalid medication schemas due to the same error as the first team.

Concluding remarks for the second group. The expected
solution was far too strange for this group. They did not realize that
they have to change the settings of the problem (the model) although a
deeper understanding of the mathematical model would have implied
this.

III. model. The expected solution. The required function has
the form f(t) = aebt +c and the Excel’s Solver function gives a = 9, 91
b = −0, 17 and c = 0, 06. Using a similar argument as in the first case
and denoting by fk the function which describes the concentration on
the interval [(k − 1)T, kT ) we obtain

fk(t) =

(

D

6

1 − ekbT

1 − ebT
− ce(k−1)bT

)

eb(t−(k−1)T ) + c.

Hence in order to maintain the concentration values between the lower
and upper limit we need

L1 − c ≤
D

6

ebT

1 − ebT
<

D

6

1

1 − ebT
≤ L2 − c.
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This implies that for fixed T the dose D may vary between the follow-
ing minimal and maximal dose:

6(L1 − c) ·
1 − ebT

ebT
≤ D ≤ 6(L2 − c) ·

(

1 − ebT
)

.

In order to obtain a proper D we need T ≤ 1
b
ln L1−c

L2−c
, so from the

given data we deduce T ≤ 6, 33. Using the previous inequalities we
can recommend the following medication schemas:

Time interval
between doses, 1 2 3 4 5 6
T (hours)
Minimal dose 5,66 12,40 20,42 29,97 41,35 54,90
Maximal dose 14,36 26,43 36,56 45,06 52,21 58,21

If S is the starting dose, we obtain

fk(t) =

((

S

6
− c

)

e(k−1)bT +
D

6
·
1 − e(k−1)bT

1 − ebT

)

· eb(t−(k−1)T ) + c

and using a similar monotonicity argument as in the first case we
obtain the necessary and sufficient conditions for S :

6
(

(L1 − c)e−bT + c
)

≤ S ≤ 6L2,

hence we obtain the following table:

Time interval
between doses, 1 2 3 4 5 6
T (hours)
Minimal starting dose 35,66 42,40 50,42 59,97 71,35 84,90
Maximal starting dose 90 90 90 90 90 90

The group’s solution for this model. The third team used
an equivalent formulation of the geometric idea for generating the
functions fk. They calculated the translation (t0) from the inverse
function of f1. They found the upper limit for T and all their results
were correct. Their minimal and maximal doses were obtained by
numerical experimentations.
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Student behaviour. This group had several questions during the
activity. Every time they had ambiguities or disagreements regarding
some aspects, they presented their problems, their ideas and asked for
advice.

Concluding remarks for the third group. The success of this
team can be explained by their efficient working style.

IV. team. The students were expected to reduce their model to
the previous one or to the first one (based on the parameter values
they obtained from the curve fitting) and to observe that a single
data set concerning only one of the compartments is not sufficient to
perform an analysis using the fourth model.

Fitting the curve f(t) = c1e
r1t + c2e

r2t + c to the given data (using
the Solver function and the least squares method) we obtain r1 =
−0, 17470162, r2 = −0, 17470162, c1 = 4, 9554490, c2 = 4, 9554490
and c = 0, 061231823. This implies that the desired function is

f(t) = 9, 9108980e−0,17470162t + 0, 061231823,

so we can repeat the arguments from the previous model.
The group’s solution for this model. The fourth team finished

on the last position (both as far as time and solutions were concerned).
Initially they wanted to use Matlab instead of Excel, but they didn’t
know how to obtain estimations for the parameters. This issue set
them back for almost 1 hour, when they restarted their calculations
in Excel. Using the Excel’s Solver function they obtained the values
c1 = 0, 177, c2 = 9, 813, c3 = 0, 00016, r1 = −1097, 03 and r2 =
−0, 169 (the result given by the Solver depends also on the initial
values from which this function is initialized). Since er1t is extremely
small, they neglected it. Their calculations were very similar to the
calculations of the third team but unfortunately they had a wrong cell
reference, so their numerical results were incorrect.

Student behaviour. They made an initial plan of what they
wanted to visualize. Due to this plan they wanted to use Matlab. A
problem occurred because they did not find the Matlab keywords for
minimizing nonlinear functions (and they did not ask for any help on
this issue). Due to their initial lag, they became hurried and made a
few mistakes on the Excel sheet. They noticed some of their errors
but they were not able to correct all of them.
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Concluding remarks for the fourth group. The overall con-
ception of this group was probably the best, but they didn’t manage
to handle their problems.

4 Concluding remarks

1. Since our students are not familiar with such an approach (real
problem+ modelling+statistical data+computer oriented orga-
nization of the hole calculations) they wanted very often to cre-
ate some formulas even if it was not possible, so we can conclude
that some mathematical notions (such as the notion of function,
inverse function, equation, result of a problem) must be rean-
alyzed and sometimes extended to be usable and useful in this
kind of situations. The use of computers during the Mathemat-
ics classes is recommended and both the teaching staff and the
students have to understand the benefits. The computer can be
used as a helpful tool (see also [6]). The Romanian curriculum
needs to be changed in order to include mathematical modelling
and computer based simulation.

2. The students were working for more than 5 hours, and even so
most of them were unable to observe the major phenomena that
occur in the drug administration (upper bound for T, asymptot-
ically periodic solution, the role of the starting dose,...). This
confirms the observations from [7] regarding the increased need
of time for solving modelling tasks. Moreover, in comparison
with the tasks from [7], where question (vi) was ”the only poorly
done section”, in our approach inequality (6) was essential in de-
veloping correct dosing schemas and it wasn’t formulated as a
separated task, so the students had to discover it. This created
great difficulties for our students.

3. The teamwork helped the students to avoid a lot of impracticable
paths during the discovery of the solutions. The students opinion
was that it is more than sure that not every student could have
reached individually the same results. This opinion confirms the
remarks from [7] regarding the reduced effectiveness of such an
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activity in students evaluation.

4. The software they used influenced their thinking in the sense
that all the teams gave the results in some kind of tables. If
they had used other software, such as Matlab, Mathematica,
Maple (with more graphical capabilities), they might have given
the solutions as graphs or they could have chosen the good med-
ication schemas by simply simulating the variation of the drug’s
concentration for the changing parameters T and D.

5. The Excel’s Solver function uses an iterative process and some-
times for the same sample gives different results depending on
the starting values of the variables. The students didn’t test
this.

6. Most of the errors that occurred can be classified as ”rational
errors” (for the definition and other examples see [1]). The most
relevant example of such an error is the use of the geometric
idea in the second and fourth case. The students had a good
motivation to use this idea (this worked in the first case) but
they did not have sufficient data to develop a correct approach.
Unfortunately they didn’t realize this.

7. During the preparation of these activities we realized that find-
ing cooperative colleagues was the hardest issue we faced. This
experience convinced us about the necessity of a special course
on modelling and on computer based mathematics for teachers,
which (besides the usual tasks) trains them to avoid these ratio-
nal error-traps even if using them would be more comfortable.

In an overall evaluation of this experience we think that it is very
alarming that in some situations (during a complex modelling activ-
ity) the students have no criteria for validating their model or their
calculations (just think about the real life validation of a wrong medi-
cation schema). These kind of errors are very useful if we have enough
time to discuss them and to correct them (unfortunately in a classical
setting the time is very limited [3]). Otherwise they should be avoided,
because they can lead to dangerous misconceptions.
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5 Appendix A

People that suffer of Asthma are often treated with the medicine theo-
phylline. Theophylline, also known as dimethylxanthine, is a methylx-
anthine drug used in therapy for respiratory diseases such as asthma
under a wide variety of brand names. Patients are often treated with
an equally large dose, D mg, over equally large time intervals, T hours.
A doctor measured how the concentration of theophylline in the blood
of a patient varies after the patient had been injected with a dose of
60 mg.

Time (hours) Concentration (mg/l)
0 10,0
2 7,0
4 5,0
6 3,5
8 2,5
10 1,9
12 1,3
14 0,9
16 0,6
18 0,5

You are asked to write a report for the doctor answering the fol-
lowing questions

1. How will the concentration of theophylline in the blood decrease
over time?

2. How can we plan a continuous medication schema with a fixed
dose D over a fixed time interval T , so that the concentration
after a couple of injections is always in the interval 5-15 mg/l?
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3. How can we plan a continuous medication schema with a start
dose S and thereafter a fixed dose D over fixed time intervals
T , so that the concentration from the first administration of the
medicine should be within the interval 5-15 mg/l?

4. What considerations must be taken into account before one uses
this medication plan for a patient?

In order to answer the above questions construct several mathe-
matical models considering the specifications listed below and then
compare the obtained medication schemas.

I. the amount of drug used by the organism is directly proportional
to the time and to the existing amount of drug in the blood (k1 is
the proportionality constant), or in a more suitable formulation,
the speed of assimilation is proportional to the concentration of
the drug in the blood;

II. in any unit time interval a fixed rate k3 of the existing theo-
phylline is transported to the liver and from the liver a fixed
rate of theophylline (k4) is returned to the blood; the absorbtion
rate in the liver is k2 while the absorbtion rate from the blood
is k1;

III. the absorbtion is realized as in the first case, but in any unit
time interval (from an external source) a fixed amount p of theo-
phylline is added to the existing theophylline (the external source
can be an adhesive patch, a pill or perfusion);

IV. the absorbtion is realized as in the second case under the addi-
tional assumption from the third case.
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