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Abstract. In this note we study a few classes of curves with interesting
geometric properties. The definition of these classes were suggested by
geometric properties of some well known curves like: straight strophoid,
cissoid, the curve defined by V. Schultz and L.C. Strasznicki which con-
tains both the cissoid and strophoid.

Definition 1.1. The curve γ is called an L−type curve if admits a para-
metric representation of the form

(1.1)

{

x = f1(t)
g(t)

y = f2(t)
g(t)

where the coefficients of the functions fi(t) = ait
3 + bit

2 + cit+di, i ∈ {1, 2},
g(t) = a3t

3 + b3t
2 + c3t + d3 satisfy the following condition

b1 = b2 = b3 = 0 or c1 = c2 = c3 = 0.

Definition 1.2. The curve γ is called a C−type curve if admits a parametric
representation of the form

(1.2)

{

x = f1(t)
g(t)

y = f2(t)
g(t)

where the functions fi(t) = ait
3 +bit

2 +di, i ∈ {1, 2}, g(t) = b3t
2 +d3 satisfy

the following condition

(1.3)
(

f2
1 + f2

2

) ...g in R[X].

Remark 1.1. 1. It is obvious that any C−type curve is an L−type
curve;

2. The straight cissoid defined by the equations x(t) = rt2

1+t2
and y(t) =

rt3

1+t2
, where r > 0 is a C−type curve (the line x = r is the asymptote

of the cissoid and r is the radius of the circle which generates the

circle, see [1], [9], [3]). The curve defined by the relations x(t) = rt2

t3+1

and y(t) = rt3

t3+1
is an L−type curve but it is not a C−type curve.

Notations. In what follows we denote an arbitrary point M(x, y) on

the curve by M(m), which means x(m) = f1(m)
g(m) , y(m) = f2(m)

g(m) , if in our

1
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definitions the coefficients of tp−1 are equal to zero (tp is the dominant

member) and x(m) = f1(1/m)
g(1/m) , y(m) = f2(1/m)

g(1/m) , if the coefficients of t are

equal to zero. If we use 1/m instead of m we consider the point at infinity
as M(0). In our proofs we denote the parameter of an arbitrary point X
with x. Throughout this paper we suppose that the intersections in our
statements do exist. We can avoid this inconvenience if we use projective
plane.

The main tools in establishing our results are the following two lemmas:

Lemma 1.1. If γ is an L−type curve, A(a), B(b) are two points on γ and
the line AB intersects γ at a third point C(c), then a + b + c = 0.

Proof. Let αx+βy+γ = 0 be the equation of the line AB. From x(t) =
f1(t)

g(t)

and y(t) =
f2(t)

g(t)
, it follows that αf1(t) + βf2(t) + γg(t) = 0. But this is

equivalent to λ1t
3 + λ2t

2 + λ3t + λ4 = 0, where λ1 = αa1 + βa2 + γa3,
λ2 = αb1 + βb2 + γb3, λ3 = αc1 + βc2 + γc3 and λ4 = αd1 + βd2 + γd3.
The above equation is a polynomial equation of degree 3 if λ1 6= 0, so it has
three real roots t1, t2 and t3. (A,B ∈ γ implies that there are at least 2 real
roots, so the third root is also real.) By Viéte’s formulas we obtain that
3
∑

i=1
ti = −

λ2

λ1
and t1t2 + t1t3 + t2t3 =

λ3

λ1
. If bi = 0, i = 1, 2, 3, it follows that

λ2 = 0, therefore we have the conclusion. Otherwise if ci = 0, i = 1, 2, 3,
it follows that λ3 = 0. This implies that t1t2 + t1t3 + t2t3 = 0 and if we
simplify with t1t2t3 (if one of these roots is zero, then we don’t have three
intersection points) then we get a + b + c = 0, where a = 1/t1, b = 1/t2 and
c = 1/t3. If a+b = 0, the third intersection point is the point at infinity. �

Lemma 1.2. If γ is a C−type curve and A(a), B(b), C(c) are three points
on γ, then the circle passing through A,B and C intersects γ at a fourth
point D(d) with the property a + b + c + d = 0.

Proof. Let x2 + y2 + αx + βy + γ = 0 be the equation of the circle C(ABC).
For the intersection points of C(ABC) with γ we obtain

(1.4)
f2
1 (t) + f2

2 (t)

g(t)
+ αf1(t) + βf2(t) + γg(t) = 0.

By the assumptions gr
f2

1
+f2

2

g = 4 and the above equation has four real roots

t1, t2, t3 and t4. From the given conditions we deduce that the coefficient of
t in the left hand side of (1.4) is 0, so by Viéte’s relations we obtain

1

t1
+

1

t2
+

1

t3
+

1

t4
= 0.

Changing the parametrization
(

t → 1
t

)

and using our notations we have
a + b + c + d = 0. If a + b + c = 0, we consider the point at infinity as the
fourth intersection point. �
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Remark 1.2. In the previous lemmas the obtained conditions are neces-
sary and sufficient for the collinearity (respectively the concyclicity) of three
(four) points from the curve.

Theorem 1.1. If γ is an L−type curve the following statements are valid:

a) If the lines d1, d2 intersect γ in six points ({Ai, Bi, Ci} = di ∩ γ,
i ∈ {1, 2}) then the intersections of the lines A1A2, B1B2, C1C2

with γ are on a straight line;
b) If the line d intersects γ in three points ({A,B,C} = d∩ γ) then the

intersections of the tangents in A, B, C with γ are on a straight line
(here A, B, C are the tangency points);

c) If the line d intersects γ in three points ({A,B,C} = d∩ γ) then the
intersections of the tangents in A, B, C with γ are on a straight line
(here A, B, C are not the tangency points).

A1
B1

C1

A2

B2

C2

A3

B3

C3

Figure 1.

Proof. a) Due to lemma 1.1 and the notations we’ve introduced we have
the following relations: a1+b1 +c1 = 0, a2+b2 +c2 = 0. If we denote
by A3, B3 and C3 the intersection points, we have a1 + a2 + a3 = 0,
b1 +b2 +b3 = 0 and c1 +c2 +c3 = 0. Adding these relations therm by
term and using the previous equalities, we obtain a3 + b3 + c3 = 0.
From remark 1.2 we deduce that A3, B3 and C3 are on a straight
line (see figure 1.).

b) Instead of considering tangents to γ in the points A,B and C we
can consider A1 = A2 = A, B1 = B2 = B and C1 = C2 = C in the
previous property. If we denote by A3, B3 and C3 the intersection
points of the tangents with the curve γ, we have a3 = −2a, b3 = −2b
and c3 = −2c, so a3 + b3 + c3 = 0 (see figure 2.).

c) If we consider the points A1(−a/2), B1(−b/2) and C1(−c/2), the
tangents in A1, B1 and C1 intersect γ in A,B respectively C. From
a+ b+ c = 0 we obtain −a

2 −
b
2 −

c
2 = 0, so the points A1, B1 and C1

are on a straight line. (In fact we obtain the same figure as in b)).
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A

B

C

A1

B 1

C1

Figure 2.

�

Theorem 1.2. If γ is a C−type curve the following properties are true:

a) If each of the circles Ci, i ∈ {1, 2, 3} intersects γ in four differ-
ent points ({Ai, Bi, Ci,Di} = Ci ∩ γ, i ∈ {1, 2, 3}) then the circles
passing through the triplets (A1, A2, A3), (B1, B2, B3), (C1, C2, C3),
(D1,D2,D3) intersect γ in four points situated on a circle;

b) If the circle C, intersects γ in four different points {A,B,C,D} =
C ∩γ then the osculating circles in these intersection points intersect
γ in four points situated on a circle;

c) If the circle C, intersects γ in four different points {A,B,C,D} = C∩
γ then there exist the points A1, B1, C1,D1 such that the osculating
circles in A1, B1, C1,D1 passes through A, B, C respectively D and
the points A1, B1, C1,D1 are situated on a circle;

d) If the line d intersects γ in three points then the osculating circles
in these intersection points intersect γ in three points situated on a
straight line;

e) If the circle C, intersects γ in four different points {A,B,C,D} =
C ∩ γ then the tangents in these intersection points to γ intersect γ
in four points situated on a circle;

f) If the circle C, intersects γ in four different points {A,B,C,D} =
C∩γ then there exist the points A1, B1, C1,D1 such that the tangents
in these points to γ intersect γ in A,B,C respectively D. Moreover
the points A1, B1, C1,D1 are situated on a circle;

g) If the circle C, intersects γ in four different points {A,B,C,D} =
C ∩ γ and we denote by E,F,G,H, I, J the intersection points of
the lines AB,BC,CD,DA,AC respectively BD with γ then each of
the quadruplets (E,F,G,H), (J,G, I,E), (F,H, J, I) is situated on
a circle.
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B1

C1
D1

A1

A2

A3
D3B2

B3

C2

C3
D2

Figure 3.

Proof. a) From the construction and lemma 1.2 we have the following
relations:

ai + bi + ci + di = 0, i ∈ {1, 2, 3}.

If we denote by A4, B4, C4 and D4 the fourth intersection point
of the circles (A1, A2, A3), (B1, B2, B3), (C1, C2, C3), respectively
(D1,D2,D3) with γ, we also have

a1 + a2 + a3 + a4 = 0, b1 + b2 + b3 + b4 = 0,

c1 + c2 + c3 + c4 = 0, d1 + d2 + d3 + d4 = 0.

Adding the last four relations term by term and using the first four,
we deduce a4 + b4 + c4 + d4 = 0. Due to remark 1.2 the points
A4, B4, C4 and D4 are on a circle (see figure 3.).

b) We apply the previous property for A1 = A2 = A3 = A, B1 = B2 =
B3 = B, C1 = C2 = C3 = C and D1 = D2 = D3 = D.

c) We consider the same figure as in the previous property, with chang-
ing the role of the points {A,B,C,D} and {A4, B4, C4,D4}.

d) Let’s denote by A,B,C the intersection points of d with γ and with
A1, B1, C1 the second intersection of the osculating circles with γ.
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Due to lemma 1.2 and the definition of an osculating circle (as the
limit of the circle passing through the points M,N,P on γ when
these points tend to a fixed point on the curve) we have a1 = −3a,
b1 = −3b and c1 = −3c. These equalities and lemma 1.1 imply that
A1, B1 and C1 are on a straight line.

e) If we denote by A1, B1, C1 and D1 the intersection points of the
mentioned tangent lines with the curve, due to lemma 1.1 we have
a1 = −2a, b1 = −2b, c1 = −2c and d1 = −2d. From lemma 1.2 we
deduce a1 + b1 + c1 + d1 = 0, so by remark 1.2 the points A1, B1, C1

and D1 are on a circle.
f) By changing the role of the points A,B,C,D and A1, B1, C1,D1 in

the previous property we obtain the proof.
g) Due to lemma 1.1 we have e = −a − b, f = −b − c, g = −c − d,

h = −d− a, i = −a− c and j = −b − d, so we have e + f + g + h =
j + g + i + e = f + h + j + i = −2(a + b + c + d) = 0. This completes
the proof.

�

In the last part we give some analogues of the above definitions, lemmas
and theorems in higher dimensions. The proofs are obvious and they are
left to the reader.

Definition 1.3. The curve γ is called a P−type curve if admits a parametric
representation of the form

(1.5)















x = f1(t)
g(t)

y = f2(t)
g(t)

z = f3(t)
g(t)

where the coefficients of the functions fi(t) = ait
4 + bit

3 + cit
2 + diti + ei,

i ∈ {1, 2, 3}, g(t) = a4t
4+b4t

3+c4t
2+d4t+e4 satisfy the following condition

b1 = b2 = b3 = b4 = 0 or d1 = d2 = d3 = d4 = 0.

Definition 1.4. The curve γ is called an S−type curve if admits a para-
metric representation of the form

(1.6)















x = f1(t)
g(t)

y = f2(t)
g(t)

z = f3(t)
g(t)

where the functions fi(t) = ait
4 + bit

3 + cit
2 + ei, i ∈ {1, 2, 3}, g(t) =

b4t
3 + c4t

2 + e4 satisfy the following condition

(1.7)
(

f2
1 + f2

2 + f2
3

) ...g in R[X].

Remark 1.3. 1. It is obvious that any S−type curve is an P−type
curve;
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2. The analogous of the straight cissoid defined by the equations x(t) =
rt2

1+t3
, y(t) = rt3

1+t3
and z(t) = rt4

1+t3
is an S−type curve. The curve

defined by the relations x(t) = rt2

1+t4
, y(t) = rt3

1+t4
and z(t) = rt4

1+t4
is

a P−type curve but it is not an S−type curve.

The main tools in establishing our results are the following two lemmas:

Lemma 1.3. If γ is a P−type curve and A(a), B(b) and C(c) are three
points on γ, then the plane ABC intersects γ at a fourth point D(d) with
the property a + b + c + d = 0.

Lemma 1.4. If γ is an S−type curve and A(a), B(b), C(c) and D(d) are
four points on γ, then the sphere passing through A,B,C and D intersects
γ at a fifth point E(e) with the property a + b + c + d + e = 0.

Theorem 1.3. If γ is a P−type curve the following statements are valid:

a) If the planes α1, α2 and α3 intersect γ in four points ({Ai, Bi, Ci,Di} =
αi ∩ γ, i ∈ {1, 2, 3}) then the intersections of the planes A1A2A3,
B1B2B3, C1C2C3 and D1D2D3 with γ are in a plane;

b) If the plane α intersects γ in four points ({A,B,C,D} = d∩γ) then
the intersections of the tangent planes in A, B, C and D with γ are
in a plane (here A, B, C and D are the tangency points);

c) If the plane α intersects γ in four points ({A,B,C,D} = d∩γ) then
the intersections of the tangent planes in A, B, C and D with γ are
in a plane (here A, B, C and D are not the tangency points).

Theorem 1.4. If γ is an S−type curve the following properties are true:

a) If each of the spheres Si, i ∈ {1, 2, 3, 4} intersects γ in five different
points, ({Ai, Bi, Ci,Di, Ei} = Si ∩ γ, i ∈ {1, 2, 3}) then the spheres
passing through the quadruplets (A1, A2, A3, A4), (B1, B2, B3, B4),
(C1, C2, C3, C4),
(D1,D2,D3,D4) and (E1, E2, E3, E4) intersect γ in five points situ-
ated on a sphere;

b) If the sphere S, intersects γ in five different points, ({A,B,C,D,E} =
S ∩ γ) then the osculating spheres in these intersection points inter-
sect γ in five points situated on a sphere;

c) If the sphere S, intersects γ in five different points, ({A,B,C,D,E} =
S ∩ γ) then there exists the points A1, B1, C1,D1, E1 such that the
osculating spheres in A1, B1, C1,D1, E1 passes through A, B, C, D
respectively E and the points A1, B1, C1,D1, E1 are situated on a
sphere;

d) If the plane α intersects γ in four points, then the osculating spheres
in these intersection points intersect γ in four points situated in a
plane;

e) If the sphere S, intersects γ in five different points, ({A,B,C,D,E} =
S ∩ γ) then the tangent planes in these intersection points to γ in-
tersect γ in five points situated on a sphere;
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f) If the sphere S, intersects γ in five different points, ({A,B,C,D,E} =
S∩γ) then there exist the points A1, B1, C1,D1, E1 such that the tan-
gent planes in these points to γ intersect γ in A,B,C,D respectively
E. Moreover the points A1, B1, C1,D1, E1 are situated on a sphere;

g) If the sphere S, intersects γ in five different points, ({A,B,C,D,E} =
S ∩ γ) and we denote by F,G,H, I, J,K,L,M,N,O the intersection
points of the planes ABC,ABD,ABE, ACD,ACE,ADE, BCD,BCE,
BDE respectively CDE with γ, then among these intersection points
there exist 4!

2 = 12 quintet (for example (F,L,O,K,H), (I,N, J,G,M),
(F,G, J,N,O) and (F,H, I,M,N)) such that each quintet is situated
on a sphere.

Definition 1.5. The curve γ is called an HP−type curve if admits a para-
metric representation of the form

(1.8)























x1 = f1(t)
g(t)

x2 = f2(t)
g(t)

............

xn = fn(t)
g(t)

where the coefficients of the functions fi(t) =
n+1
∑

j=0
aijt

j, i ∈ {1, 2, 3, · · · , n},

g(t) =
n+1
∑

j=0
a(n+1)jt

j satisfy the following condition

ai1 = 0 for all i ∈ {1, 2, · · · , n + 1} or ain = 0 for all i ∈ {1, 2, · · · , n + 1}.

Definition 1.6. The curve γ is called an HS−type curve if admits a para-
metric representation of the form

(1.9)























x1 = f1(t)
g(t)

x2 = f2(t)
g(t)

............

xn = fn(t)
g(t)

where the functions fi(t) =
n+1
∑

j=0,
j 6=1

aijt
j, i ∈ {1, 2, 3, · · · , n} and g(t) =

n
∑

j=0,
j 6=1

a(n+1)jt
j

satisfy the following condition

(1.10)

(

n
∑

i=1

f2
i

)

...g in R[X].

Remark 1.4. 1. It is obvious that any HS−type curve is an HP−type
curve;

2. The analogous of the straight cissoid defined by the equations xi(t) =
rti+1

1 + tn
, for all i ∈ {1, 2, · · · , n} is an HS−type curve. The curve
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defined by the relations xi(t) =
rti+1

1 + tn+1
, for all i ∈ {1, 2, · · · , n} is

an HP−type curve but it is not a HS−type curve.

The main tools in establishing our results are the following two lemmas:

Lemma 1.5. If γ is an HP−type curve and Ai(ai), i ∈ {1, 2, · · · , n} are
n points on γ, then the hyperplane A1A2...An intersects γ at an (n + 1)th

point An+1(an+1) with the property
n+1
∑

i=1
ai = 0.

Lemma 1.6. If γ is an HS−type curve and Ai(ai), i ∈ {1, 2, · · · , n + 1}
are n + 1 points on γ, then the hypersphere passing through A1A2...An+1

intersects γ at an (n + 2)th point An+2(an+2) with the property
n+2
∑

i=1
ai = 0.

Theorem 1.5. If γ is an HP−type curve the following statements are valid:

a) If the hyperplanes αi, i ∈ {1, 2, · · · , n} intersect γ in n + 1 points,
({Aij |j ∈ {1, 2, · · · , n + 1} = αi ∩ γ, i ∈ {1, 2, · · · , n}) then the in-
tersections of the hyperplanes (Aij)1≤i≤n with γ are in a hyperplane;

b) If the hyperplane α intersects γ in n+1 points, ({Aj |j ∈ {1, 2, · · · , n+
1}} = α∩γ) then the intersections of the tangent hyperplanes in these
intersection points with γ are in a hyperplane (here (Aj)1≤j≤n+1 are
the tangency points);

c) If the hyperplane α intersects γ in n+1 points, ({Aj |j ∈ {1, 2, · · · , n+
1}} = α∩γ) then the intersections of the tangent hyperplanes in these
intersection points with γ are in a hyperplane (here (Aj)1≤j≤n+1 are
not the tangency points);

Theorem 1.6. If γ is an HS−type curve the following properties are true:

a) If each of the hyperspheres Si, i ∈ {1, 2, · · · , n + 1} intersect γ
in n + 2 different points, ({Aij |j ∈ {1, 2, · · · , n + 2} = Si ∩ γ,
i ∈ {1, 2, · · · , n + 1}) then the hyperspheres passing through the
(n + 1)−tuples (Aij)1≤i≤n+1 intersect γ in n + 2 points situated on
a hypersphere;

b) If the hypersphere S, intersects γ in n + 2 different points, ({Aj |j ∈
{1, 2, · · · , n + 2} = S ∩ γ) then the osculating hyperspheres in these
intersection points intersect γ in n + 2 points situated on a hyper-
sphere;

c) If the hypersphere S, intersects γ in n + 2 different points, ({Aj |j ∈
{1, 2, · · · , n + 2} = S ∩ γ) then there exists the points A′

j , where

j ∈ {1, 2, · · · , n + 2} such that the osculating hyperspheres in these
points passes through the initially intersection points. Moreover these
points are situated on a hypersphere;

d) If the hyperplane α intersects γ in n + 1 points, then the osculating
hyperspheres in these intersection points intersect γ in n + 1 points
situated in a hyperplane;
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e) If the hypersphere S, intersects γ in n + 2 different points, ({Aj |j ∈
{1, 2, · · · , n + 2} = S ∩ γ) then the tangent hyperplanes in these
intersection points to γ intersect γ in n + 2 points situated on a
hypersphere;

f) If the hypersphere S, intersects γ in n + 2 different points, ({Aj |j ∈
{1, 2, · · · , n + 2} = S ∩ γ) then there exist the points A′

j , where

j ∈ {1, 2, · · · , n + 2}, such that the tangent hyperplanes in these
points to γ intersect γ in A1, A2, · · · An+2. Moreover these points
are situated on a hypersphere;

g) If the hypersphere S, intersects γ in n + 2 different points ({Aj |j ∈
{1, 2, · · · , n + 2} = S ∩ γ) and we denote by Mij the intersection
of the hyperplane determined by the points (Ak)1≤k≤n+2,

i6=k 6=j
with γ for

i, j ∈ {1, 2, · · · , n + 2}, i 6= j, then for every cyclic permutation
(

1 2 · · · n + 2
σ(1) σ(2) · · · σ(n + 2)

)

the points (Miσ(i))1≤i≤n+2 are situated on a hypersphere.

If we use the first and the last coefficient in the Viéte’s relations, we can
obtain an other class of curves:

Definition 1.7. The curve γ is called an HPL−type curve if admits a
parametric representation of the form

(1.11)























x1 = f1(t)
g(t)

x2 = f2(t)
g(t)

............

xn = fn(t)
g(t)

where the functions fi(t) =
n+1
∑

j=0
aijt

j, i ∈ {1, 2, 3, · · · , n} and g(t) =
n+1
∑

j=0
a(n+1)jt

j

satisfy the following condition

(1.12) ai(n+1) = (−1)n+1ai0, i ∈ {1, 2, 3, ..., n + 1}

or n is even and ai(n+1) = ai0, i ∈ {1, 2, 3, ..., n + 1}.

Theorem 1.7. If γ is a HPL− type curve, the properties from theorem 1.5
are valid.
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[1] Sz. András, Á. Baricz, Some interesting properties of the Diocles cissoid, to appear.
[2] I. N. Bronstejn, K. A. Szemengyajev, G. Musiol, H. Mühlig, Matematikai kézikönyv,
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[8] F. Reinhardt, H. Soeder, Atlasz-Matematika, Athenaeum Kiadó, 1999.
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